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Asymptotic behaviour of sample mean and autocorrelation

Fractional Lévy processes
A moment estimator
Properties of the estimator

Fractional Lévy processes

L = (Lt)t≥0 Lévy process

E (L1) = 0, Var(L1) <∞, d ∈ (0, 1/2)

Md(t) :=
1

Γ(d + 1)

∫ ∞
−∞

[
(t − s)d

+ − (−s)d
+

]
dLs

fractional Lévy process with Hurst parameter H := d + 1/2
(Marquardt, 2006)

Xt := Md(t + 1)−Md(t), t ∈ N

fractional Lévy noise.

Goal: Estimate d (resp. H), based on observations X1,X2, . . . ,Xn.

Alexander Lindner, TU Braunschweig Sample autocorrelation of continuous time MA



Motivating example
Asymptotic behaviour of sample mean and autocorrelation

Fractional Lévy processes
A moment estimator
Properties of the estimator

Fractional Lévy processes
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Fractional Lévy processes
A moment estimator
Properties of the estimator

If B Brownian motion, then Md selfsimilar, and many estimators
for d exist based on this property.
But: Md not selfsimilar in general, hence other estimators needed.

Fractional Lévy noise (Xt)t∈N strictly stationary and has same
autocovariance function γX and autocorrelation function ρX as
fractional Gaussian noise.

γX (h) =
σ2

0

2

(
|h + 1|2H − 2|h|2H + |h − 1|2H

)
σ2

0 = Var(X1)

ρX (h) =
γX (h)

γX (0)

Idea: Estimate γX (h), h = 1, . . . , h̄, and get H (hence
d = H − 1/2) using a moment estimator. [Alternatively, could try
spectral density estimator.]

Alexander Lindner, TU Braunschweig Sample autocorrelation of continuous time MA



Motivating example
Asymptotic behaviour of sample mean and autocorrelation

Fractional Lévy processes
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Fractional Lévy processes
A moment estimator
Properties of the estimator

If B Brownian motion, then Md selfsimilar, and many estimators
for d exist based on this property.
But: Md not selfsimilar in general, hence other estimators needed.
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Fractional Lévy processes
A moment estimator
Properties of the estimator

γX (0) = σ2
0

γX (1) =
σ2

0

2
(22H − 2)

=⇒ ρX (1) = 22H−1 − 1

=⇒ H =
1

2

(
1 +

log(ρX (1) + 1)

log 2

)

Hence if

γ̂X (h) :=
1

n

n∑
k=1

XkXk+h

estimator for γX (h), then

ρ̂X (1) =
γ̂X (1)

γ̂X (0)
, Ĥ =

1

2

(
1 +

log(ρ̂X (1) + 1)

log 2

)
estimators for ρX (1) and H.
Question: Asymptotic properties of γ̂X (0), . . . , γ̂X (h̄), Ĥ?
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Fractional Lévy processes
A moment estimator
Properties of the estimator

γX (0) = σ2
0

γX (1) =
σ2

0

2
(22H − 2)

=⇒ ρX (1) = 22H−1 − 1

=⇒ H =
1

2

(
1 +

log(ρX (1) + 1)

log 2

)
Hence if

γ̂X (h) :=
1

n

n∑
k=1

XkXk+h

estimator for γX (h), then

ρ̂X (1) =
γ̂X (1)

γ̂X (0)
, Ĥ =
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Properties of the estimator

(Xt)t∈Z is mixing in the ergodic theoretic sense, i.e.

lim
t→∞

P(X0 ∈ A, Xt ∈ B) = P(X0 ∈ A) P(X0 ∈ B) ∀ A,B ∈ B(R)

(by applying result of Maruyama (1970) on infinitely divisible
processes).

Hence ergodic and

γ̂(h) =
1

n

n∑
k=1

XkXk+h
a.s./L1

→ E (X0Xh) = γX (h) (n→∞),

so Ĥ strongly consistent estimator.
Asymptotic normality? Usually proved showing strong mixing
conditions, but fractional Lévy process is not strongly mixing.
Hence need other concepts.
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Fractional Lévy processes
A moment estimator
Properties of the estimator

Xt = Md(t + 1)−Md(t)

=
1

Γ(d + 1)

∫ ∞
−∞

[
[t + 1− s)d

+ − (−s)d
+

]
−
[
(t − s)d

+ − (−s)d
+

]
dLs

=

∫ ∞
−∞

f (t − s) dLs ,

with
f (t) := (t + 1)d

+ − td
+.

(Here: f 6∈ L1, f ∈ L2.)

Theory for asymptotic behaviour of ACF of Lévy driven continuous
time moving average processes is needed.
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Setup
The sample mean
The sample autocorrelation

Setup
Continuous time MA:
L = (Lt)t≥0 Lévy process

E (L1) = 0,Var(L1) = σ2
L <∞

f : R→ R, f ∈ L2

Xt = µ+

∫ ∞
−∞

f (t − s) dLs

(1)

Discrete time MA:
(Zt)t∈Z i.i.d.

E (Z0) = 0, Var(Z1) = σ2
Z <∞∑

j∈Z
|ψj | <∞

Yt = µ+
∑
j∈Z

ψjZt−j = µ+
∑
j∈Z

ψt−jZj

(2)

(Xt)t∈Z in general not of form (2) (some exceptions:
f =

∑
j∈Z ψj1(j ,j+1], or X Ornstein–Uhlenbeck process), hence

cannot apply well known theory for (2), according to which

Ȳn =
1

n

n∑
k=1

Yk ∼ AN(µ,
1

n
v), v = σ2

Z (
∞∑

j=−∞
ψj)

2 =
∞∑

h=−∞
γY (h).
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Setup
The sample mean
The sample autocorrelation

Theorem: [Continuous time MA, sample mean]

Xt = µ+

∫ ∞
−∞

f (t − s) dLs

Let F : [0, 1]→ [0,∞], F (u) :=
∞∑

j=−∞
|f (u + j)|

Suppose that F ∈ L2([0, 1]). (3)

Then

v :=
∞∑

h=−∞
γ(h) = σ2

L

∫ 1

0

 ∞∑
j=−∞

f (u + j)

2

du
if f ≥ 0

= σ2
L

∫ 1

0
F 2(u) du

converges and

X̄n =
1

n

n∑
k=1

Xk ∼ AN(µ,
1

n
v)
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Setup
The sample mean
The sample autocorrelation

Remarks:

I (3) implies f ∈ L1(R)

I In particular, Theorem is not applicable for fractional Lévy
noise.

I f ∈ L1(R) and f ∈ L2(R) and f ≥ 0 do not imply (3). This is
in contrast to the discrete case, where

∑∞
j=−∞ |ψj | <∞

implies
∑∞

h=−∞ |γY (h)| <∞.

I Idea of proof: First for f with compact support (m-dependent
sequences) and then apply a variant of Slutsky’s lemma, as in
discrete time.
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Bartlett’s formula
Suppose Yt =

∑∞
j=−∞ ψjZt−j ,

∑
|ψj | <∞, (Zt) i.i.d. noise with

E (Z 4
0 ) =: η (σ2

Z )2 <∞

γ̂n(h) :=
1

n

n∑
t=1

XtXt+h, ρ̂n(h) :=
γ̂n(h)

γ̂n(0)
.

Then

(ρ̂n(1), . . . , ρ̂n(h)) ∼ AN((ρ(1), . . . , ρ(h)), n−1W ), W = (wij)i ,j=1,...,h

wij =
∞∑

k=−∞

[
ρ(k + i)ρ(k + j) + ρ(k − i)ρ(k + j) + 2ρ(i)ρ(j)ρ2(k)

−2ρ(i)ρ(k)ρ(k + j)− 2ρ(j)ρ(k)ρ(k + i)
]

wij does not depend on η. Same result also without fourth
moment assumption but quicker decrease of ψj
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Theorem: [Sample autocorrelation]
L Lévy process such that

E (L1) = 0, σ2
L = E (L2

1) <∞, η := σ−4
L E (L4

1) <∞
f : R→ R, f ∈ L2(R)

Xt :=

∫ ∞
−∞

f (t − s) dLs , t ∈ Z.

Denote

G : [0, 1]→ [0,∞], G (u) :=
∞∑

j=−∞
f (u + j)2

and suppose

G ∈ L2([0, 1]) and
∞∑

k=−∞


∫ ∞
−∞
|f (s)f (s + k)| ds︸ ︷︷ ︸

=σ−2
L γ(k), if f≥0


2

<∞
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(then f ∈ L4(R)). Denote for q ∈ Z

gq : [0, 1]→ R, u 7→
∞∑

j=−∞
f (u + j)f (u + j + q)

Then

gq ∈ L2([0, 1]),
∞∑

k=−∞
γ(k)2 <∞, and

(ρ̂n(1), . . . , ρ̂n(h)) ∼ AN((ρ(1), . . . , ρ(h)), n−1W̃ ), W̃ = (w̃ij)i ,j=1,...,h

w̃ij = wij︸︷︷︸
Bartlett

+
(η − 3)σ4

L

γ(0)2

∫ 1

0

[
gi (u)− ρ(i)g0(u)

] [
gj(u)− ρ(j)g0(u)

]
du︸ ︷︷ ︸

=:w̃
(2)
ij
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Remarks

I w̃
(2)
ij = 0 if η = 3, e.g. L a Brownian motion

I If f =
∑∞

j=−∞ ψj1(j ,j+1], then w̃
(2)
ij = 0 (discrete time MA

process)

I If f (x) = 1[0,1/2) + 1[1,2) and η 6= 3, then w̃
(2)
11 6= 0

(corresponds to sampling discrete time MA process only at
even times)

I The theorem can be applied to fractional Lévy noise if
d ∈ (0, 1/4). For general d ∈ (0, 1/2), Theorem can be
applied to differenced Lévy noise (Xt − Xt−1)t∈Z.

I If the assumptions of the Theorem are violated, then stable
limits possible.

I Results connected to results of Peccati, Taqqu and coauthors.
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d ∈ (0, 1/4). For general d ∈ (0, 1/2), Theorem can be
applied to differenced Lévy noise (Xt − Xt−1)t∈Z.
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