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Motivation

• Aim: Modelling electricity spot and forward prices in a general

framework which accounts for the stylised facts.

• Stylised facts: mean-reversion, (non-)stationarity, stochastic

volatility, jumps, Samuelson effect.

• Main innovations:

– Model the spot price directly (in stationarity) — not its

dynamics.

– Use Lévy semistationary processes and ambit fields as

building blocks.
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Outline

We proceed as follows. We

• model electricity spot prices by Lévy semistationary processes,

• model electricity forward prices by ambit fields,

• establish the link between spot and forward prices in our new

modelling framework.
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Lévy semistationary (LSS) processes

We use the class of Lévy semistationary (LSS) processes as a

building block for our new model for electricity spot prices.

A LSS process Y = {Yt}t∈R
is given by

Yt = µ +

t
∫

−∞

g(t − s)ωsdLs +

t
∫

−∞

q(t − s)asds, (1)

where µ is a constant, L is a Lévy process, g and q are nonnegative

deterministic functions on R, with g (t) = q (t) = 0 for t ≤ 0, and ω

and a are càdlàg processes.

Note:

• The name Lévy semistationary processes has been derived from

the fact that the process Y is stationary as soon as ω and a are

stationary.

• The integration in (1) is in the Itô sense.
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Using a driftless LSS process as the
building block for the spot price

For the electricity spot price model we ignore the ‘drift’, hence

Yt =

t
∫

−∞

g(t − s)ωsdLs. (2)

Furthermore we assume that ω and L are independent.

Remark A spot model based on (2) accounts for jumps, stochastic

volatility, stationarity and the Samuelson effect in a very general way.

Using Y as a building block, we can now formulate a geometric and

an arithmetic model for the electricity spot price.
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Geometric spot price model

Let Λ : R+ → R+ denote a bounded and measurable deterministic

seasonal function.

In a geometric set up, we define the spot price Sg = (Sg
t )t∈R by

S
g
t = Λ(t) exp(Yt), Yt =

t
∫

−∞

g(t − s)ωsdLs. (3)

Special cases of such models include the classical Schwartz model and

the CARMA–based models.
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Arithmetic spot price model

Alternatively, one can construct a spot price model which is of

arithmetic type.

The following condition is sufficient for price positivity.

Assumption (P): Let L be a Lévy subordinator and let the kernel

function g in (2) be positive.

If assumption (P) is satisfied, we define the electrictity spot price

Sa = (Sa
t )t≥0 by

Sa
t = Λ(t)Yt, Yt =

t
∫

−∞

g(t − s)ωsdLs. (4)

Note that a special case of a superposition of such a model is given

by the model in Benth, Kallsen, & Meyer–Brandis (2007).

Extensions: Superposition; non–stationary components, leverage

effect etc..
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Forward price in the geometric model

The forward price Ft(T ) at time t for contracts maturing at time

T ≥ t is given by

Ft(T ) = EQ [Sg
T | Ft] ,

with Q being an equivalent probability to P .

When we compute that, we observe that (under some regularity

conditions) ln(Ft(T )) is given by a superposition of ambit fields.
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Ambit fields and ambit processes

We think of ambit fields as being of the form

Yt (x) = µ +

∫

At(x)

g (ξ, s; x, t)σs (ξ) L (dξ, ds) +

∫

Dt(x)

q (ξ, s; x, t) as (ξ) dξds,

where At (x), and Dt (x) are ambit sets, g and q are deterministic

function, σ ≥ 0 is a stochastic field referred to as volatility, and L is a

Lévy basis. (Integration in the sense of Rajput & Rosinski (1989).)

(x(θ), t(θ))Xθ

At(θ)(x(θ))

@

�
�

�

x

Note that a LSS process is the null–spatial case of an ambit field.
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Assumptions and notation

• We assume that σ⊥⊥L.

• Let t ≥ 0 denote the current time, T > 0 the time of maturity of

the forward contract and x = T − t the corresponding time to

maturity.

We suggest to model the forward price as a process, which is

stationary in time t. In order to ensure that, we make the following

structural assumptions:

• The damping function satisfies h(ξ, s, x, t) = k(ξ, t − s, x), for a

function k,

• σs(ξ) is stationary in s,

• the ambit set is of the form At(x) = A0(x) + (0, t).
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Modelling a forward contract
by an ambit field

We propose to model a forward contract, denoted by ft(x) by

ft(x) =

∫

At(x)

k(ξ, t − s; x)σs(ξ)L(dξ, ds),

where all quantities are specified as before.

Remark • We use a tempo–spatial model to model the forward

which depends on the current time t and the time to maturity

x = T − t (this is the spatial component).

• Such a model allows for stationarity in time, stochastic volatility,

Samuelson effect etc.

How shall we choose σ, At(x), k etc.?
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Choice of σ

A very general specification would be the following one. Let

σ2
t (x) =

∫

Ct(x)

j(ξ, s; x, t)L(dξ, ds),

for a Lévy basis L, a deterministic kernel function j and an ambit set

Ct(x).

In order to ensure that forward contracts close in maturity dates are

strongly correlated with each other, we could choose the Lévy kernel

j such that

Cor(σ2
t (x), σ2

t (x̄))

is high for values of x and x̄ which are close to 0 (i.e. closeness to

maturity).
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Choice of the ambit set At(x)

Let u = T − t and A
(c)
t (u) = {(ξ, s) : s ≤ t, 0 ≤ ξ ≤ c(t + u − s)}.

b T=t+u

b t

ξ

s

b t

b T=t+u

b t

ξ

s

b t
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Link between spot and forward price

Aim: We wish to have (at least in law)

lim
x↓0

ft (x) → fT (0) = YT , where Yt =

t
∫

−∞

g(t − s)ωsdZs.

Now we consider the special case of a standard normal Lévy base L

and a standard Brownian motion Z.

Then, f is mixed normal, in particular

ft (x)|σ ∼ N






0,

∫

At(x)

k(ξ, t − s, x)2σ2
s (ξ) dξds






.
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Link between spot and forward price

So, for an ambit set given by

At(x) = {(ξ, s) : s ≤ t, 0 ≤ ξ ≤ c(t + x − s)}, we get for the

conditional variance of f given σ that

t
∫

−∞

c(t+x−s)
∫

0

k(ξ, t−s, x)2σ2
s (ξ) dξds =

∞
∫

0

c(v+x)
∫

0

k(ξ, v, u)2σ2
t−v(ξ)dξdv

→

∞
∫

0

cv
∫

0

k(ξ, v, 0)2σ2
T−v(ξ)dξdv, as x → 0.

In the specific case when c = ∞, k factorises as in

k(ξ, v, 0) = k0 (v) k1 (ξ) and ω2
v,t−v

L
=

∫ ∞

0
k1(ξ)

2σ2
t−v(ξ)dξ, we get

g = k0 and

ft(x) → YT , as x → 0, t → T.
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Summary and Outlook

• We propose to model

– electricity spot prices by Lévy semistationary processes and

– electricity forward prices by ambit fields.

• We establish a link between the spot and the forward model.

The next steps:

• Empirical work: How can we estimate/simulate from the new

models? Which choice of the kernel functions k, g mimics the

Samuelson effect in a realistic way? What are good choices for

the stochastic volatility field? etc.

• Theoretical work: Can we establish a stochastic calculus for

ambit processes? etc.
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