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Semimartingales and the observation scheme

In this talk we consider Itô semimartingales, defined on (Ω,F , (Ft)t≥0,P), of
the form

Xt = X0 +

∫ t

0

asds +

∫ t

0

σsdWs + (x1{|x|≤1}) ∗ (µt − νt)︸ ︷︷ ︸
small jumps

+ (x1{|x|>1}) ∗ µt︸ ︷︷ ︸
big jumps

,

where W is a standard Brownian motion, a is a drift process, σ is the volatility,
µ is a jump measure and ν is its predictable compensator.

We are in the context of high-frequency observations, i.e. the values

Xi∆n , i = 1, . . . , [t/∆n]

are observed, t is fixed and ∆n → 0.
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Identifiable objects: complete observation case

Assume that we can observe the whole path (Xs)s∈[0,t] of the Itô
semimartingale X . Then we can make the following observation:

(i) We can identify the volatility process (σs)s∈[0,t].

(ii) We can identify the jump part (∆Xs)s∈[0,t] of X (∆Xs = Xs − Xs−).

(iii) We can identify the quadratic variation process ([X ,X ]s)s∈[0,t].

(iv) We can’t identify the drift process (as)s∈[0,t] (unless σ ≡ 0)!

(v) We can’t identify the law of the jump part of X (Levy case)!

(vi) But we can identify the activity of jumps (cf. Blumenthal-Getoor index).
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Standard statistical questions

In practice, people are interested in obtaining information about the unobserved
path of X from discrete observations Xi∆n , i = 1, . . . , [t/∆n]. Typical
statistical problems are:

(i) How to estimate the quadratic variation

[X ,X ]t =

∫ t

0

σ2
s ds +

∑
s≤t

|∆Xs |2 <∞

of X?

(ii) How can we estimate functionals of σ (typically
∫ t

0
|σs |pds for p > 0)?

(iii) Does the unobserved path of X have jumps?

(iv) Does the unobserved path of X contain a Brownian part?

(v) What is the activity of the jump process?

(vi) What is the ”relative contribution” of various parts of X?
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Various useful functionals

To solve the afore-mentioned problems the following classes of functional are
extremely useful: (∆n

i X = Xi∆n − X(i−1)∆n
):

(i) Continuous case:

V (f )n
t = ∆n

[t/∆n ]∑
i=1

f
(∆n

i X√
∆n

)
(Power variation)

V (f )n
t = ∆n

[t/∆n ]∑
i=1

f
(∆n

i X√
∆n

, . . . ,
∆n

i+k−1X√
∆n

)
(Multipower variation)

(ii) Discontinuous case:

V (f )n
t =

[t/∆n ]∑
i=1

f (∆n
i X )

The name power variation comes from the fact that we usually use f (x) = |x |p.
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Law of large numbers: continuous case, power variation
Here we consider a continuous Itô semimartingale of the type

Xt = X0 +

∫ t

0

asds +

∫ t

0

σsdWs ,

where a is predictable and locally bounded, and σ is càdlàg adapted. Define

ρx(f ) = E[f (xU)] , x ∈ R ,U ∼ N(0, 1).

Theorem: Assume that f ∈ Cp(R). Then it holds

V (f )n
t

ucp−→ V (f )t =

∫ t

0

ρσs (f )ds.

In the special case f (x) = |x |p, p > 0, we obtain (mp = E[|N(0, 1)|p])

V (f )n
t

ucp−→ mp

∫ t

0

|σs |pds.
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Law of large numbers: discontinuous case

In the discontinuous case we only consider the functions f (x) = |x |p, p > 0.

Recall that V (f )n
t =

∑[t/∆n]
i=1 f (∆n

i X ).

Theorem (Lepingle (1976)): For all semimartingales we obtain the
convergence

V (f )n
t

P−→

 [X ,X ]t =
∫ t

0
σ2

s ds +
∑

s≤t |∆Xs |2 for p = 2∑
s≤t |∆Xs |p for p > 2

with ∆Xs = Xs − Xs−.

Roughly speaking, the jump part dominates for powers p > 2 whereas the
continuous part dominates for powers 0 < p < 2. In the following we will see
that in the continuous case we require a certain normalization to obtain
non-trivial limits.
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Discontinuous case: robust estimation I
For various statistical problems we need to estimate certain characteristics of
the continuous part in the presence of the jump part. One idea is to use a
threshold-based estimator proposed Mancini (2004):

TRV (X , $)n
t =

[t/∆n]∑
i=1

|∆n
i X |21{|∆n

i X |≤c∆$
n },

where $ ∈ (0, 1/2).

Theorem: Let $ ∈ (0, 1/2). For Itô semimartingales we obtain the
convergence

TRV (X , $)n
t

ucp−→
∫ t

0

σ2
s ds.

A similar result holds for a truncated version of V (f )n
t with f (x) = |x |p for

powers 0 < p < 2. In the case p > 2 we require further assumptions on the
activity of the jump part to deduce robustness.
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Discontinuous case: robust estimation II
Another idea of obtaining jump robust measures for all powers of volatility is
the multipower variation of the form

V (X , p1, . . . pk ,∆n)t = ∆
1− p+

2
n

[t/∆n]−k+1∑
i=1

|∆n
i X |p1 · · · |∆n

i+k−1X |pk

where pj ≥ 0 and p+ =
∑

pj . This concept goes back to Barndorff-Nielsen and
Shephard.

Theorem: If maxj(pj) < 2 and X is an Itô semimartingales, it holds that

V (X , p1, . . . pk ,∆n)t
ucp−→ mp1 · · ·mpk

∫ t

0

|σs |p
+

ds

Indeed, this class provides jump robust estimates for all positive powers p:
choose k ∈ N with p/k < 2 and use the powers pj = p/k, j = 1, . . . , k.
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Application: estimation of the jump quadratic variation

The afore-mentioned robust methods give us the possibility to estimate the
quadratic variation of the continuous and the discontinuous part of X
separately.

Truncation approach:

V (X , 2,∆n)t − TRV (X , $)n
t

P−→
∑
s≤t

|∆Xs |2.

Multipower approach:

V (X , 2,∆n)t −m−2
1 V (X , 1, 1,∆n)t

P−→
∑
s≤t

|∆Xs |2.
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Application: Test for jumps I

Barndorff-Nielsen & Shephard (2004) use the multipower variation method to
construct a test for jumps. They define two test statistics:

Sn,1
t = ∆−1/2

n (V (X , 2,∆n)t −m−2
1 V (X , 1, 1,∆n)t)

Sn,2
t = ∆−1/2

n

(m−2
1 V (X , 1, 1,∆n)t

V (X , 2,∆n)t
− 1
)

Large values of Sn,1
t indicate the presence of jumps; negative values of Sn,2

t

(<< 0) also speak for a substantial influence of the jump part.

Remark: Positive values of Sn,2
t can be interpreted as an indication that X is

not an Itô semimartingale.
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Application: Test for jumps II

Ait-Sahalia & Jacod (2008) apply the asymptotic theory to test for the
presence of jumps. They use the ”change of frequency” approach:

Sn
t =

V (X , 4, 2∆n)t

V (X , 4,∆n)t
.

Our LLN results imply that

Sn
t

P−→

{
2 : when X has a continuous path

1 : when X has a discontinuous path

The derivation of a formal test procedure is straightforward once we obtain a
central limit theorem for the statistic Sn (still to come).
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Definition of stable convergence
In this talk we will intensively use the concept of stable convergence which is due to
Renyi (1963).

Definition: A sequence Yn on (Ω,F ,P) converges stably in law to the limit Y

(Yn
st−→ Y ), that is defined on the extension (Ω′,F ′,P′) of the original

probability space, iff for any real-valued function g ∈ Cb and any bounded
F-measurable variable Z it holds that

lim
n→∞

E[g(Yn)Z ] = E′[g(Y )Z ].

Clearly, stable convergence is stronger than weak convergence.

Let G ⊂ F be a sub-σ-algebra of F . When the above convergence holds for
any G-measurable variable Z , then Yn is said to converge G-stably in law
towards Y In this case we write

Yn
Gst−→ Y .
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Properties of stable convergence I

(i) (General relation) We have

Yn
P−→ Y =⇒ Yn

st−→ Y =⇒ Yn
d−→ Y .

(ii) (Alternative definition) It holds that

Yn
st−→ Y ⇔ (Yn,Z )

d−→ (Y ,Z ) ⇔ (Yn,Z )
st−→ (Y ,Z ).

for any F-measurable variable Z .

(iii) (Joint convergence) Let Yn
st−→ Y , Zn

P−→ Z . Then

(Yn,Zn)
st−→ (Y ,Z ).

.
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Properties of stable convergence II

(iv) (Why extension?) Assume that Yn
st−→ Y and Y is F-measurable. Then

Yn
P−→ Y .

(v) (Stable ∆-method) Let
√

n(Yn − Y )
st−→ X and g ∈ C 1. Then

√
n(g(Yn)− g(Y ))

st−→ g ′(Y )X .

(vi) (Crucial application) Assume that
√

n(Yn − Y )
st−→ VU, where U ∼ N(0, 1),

V > 0 unknown F-measurable rv with V ⊥ U (mixed normality). If

V 2
n

P−→ V 2 it holds that

√
n(Yn − Y )

Vn

st−→ U ∼ N(0, 1).
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The nature of stable convergence

Let us consider a sequence (Xi )i≥1 of i.i.d. rv with EXi = 0, EX 2
i = 1, defined

on (Ω,F ,P). Assume that F = σ(X1,X2, . . .). We obtain

1√
n

n∑
i=1

Xi
d−→ N(0, 1).

Is there a ”stable version” of this CLT? Yes! Indeed, it is rather easy to prove
that

1√
n

n∑
i=1

Xi
st−→ U ∼ N(0, 1) ,

where U is defined on an extension of (Ω,F ,P) s.t. U ⊥ F .

In fact, this is a typical situation: we usually only require a ”new” standard
normal variable in the case of stable convergence for rv’s, or a ”new” Brownian
motion in the case of stable convergence of processes.
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CLT: The continuous case

Here we consider a continuous Itô semimartingale X of the form

Xt = X0 +

∫ t

0

asds +

∫ t

0

σsdWs .

Recall the definition

V (f )n
t = ∆n

[t/∆n]∑
i=1

f
(∆n

i X√
∆n

)
.

We assume additionally that the volatility process σ is itself an Itô
semimartingale. The following result is established in Jacod (1994),
Barndorff-Nielsen, Graversen, Jacod, Podolskij & Shephard (2006) and
Kinnebrock & Podolskij (2008).
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semimartingale. The following result is established in Jacod (1994),
Barndorff-Nielsen, Graversen, Jacod, Podolskij & Shephard (2006) and
Kinnebrock & Podolskij (2008).

Mark Podolskij

Multipower Variation



Motivation Law of large numbers Robust LLN’s Some applications Stable convergence Central limit theorems Robust CLT’s

The stable CLT

Theorem: Let f ∈ C 1
p (R) be an even function. Then we obtain

∆−1/2
n (V (f )n

t − V (f )t)
st−→ L(f )t =

∫ t

0

vsdW ′
s ,

where W ′ is a Brownian motion independent of F , and

v 2
s = ρσs (f 2)− ρ2

σs
(f ).

Moreover, if f (x) = |x |p with p > 0, it holds that

∆−1/2
n (V (f )n

t − V (f )t)
st−→
√

m2p −m2
p

∫ t

0

|σs |pdW ′
s ,

where mp = E[|N(0, 1)|p].
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A feasible CLT

Notice that the limit process L(f )t =
∫ t

0
vsdW ′

s is mixed normal with mean 0

and conditional variance
∫ t

0
v 2
s ds (L(f )t = MN(0,

∫ t

0
v 2
s ds)). In this case we

can always obtain a standard CLT by the properties of stable convergence.

Example: Consider the function f (x) = |x |p with p > 0. Recall that in this
case the conditional variance is given as∫ t

0

v 2
s ds = (m2p −m2

p)

∫ t

0

|σs |2pds.

Consequently, it holds that

∆
−1/2
n (V (f )n

t − V (f )t)√
m2p−m2

p

m2p
V (f 2)n

t

d−→ N(0, 1).
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Estimation of the conditional variance: general case

Recall again that

∆−1/2
n (V (f )n

t − V (f )t)
st−→ L(f )t =

∫ t

0

vsdW ′
s = MN

(
0,

∫ t

0

v 2
s ds
)
.

The following statistic is the most natural estimator of the conditional variance∫ t

0
v 2
s ds:

∆n

[t/∆n]∑
i=1

(
f 2
(∆n

i X√
∆n

)
− f
(∆n

i X√
∆n

)
f
(∆n

i+1X
√

∆n

))

ucp−→
∫ t

0

v 2
s ds.

Note: natural does not mean optimal!
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Idea of the proof

First, note the approximation

∆n
i X√
∆n

= ∆−1/2
n

(∫ i∆n

(i−1)∆n

asds︸ ︷︷ ︸
=OP(∆n)

+

∫ i∆n

(i−1)∆n

σsdWs︸ ︷︷ ︸
=OP(∆

1/2
n )

)

≈ ∆−1/2
n σ(i−1)∆n

∆n
i W = αn

i .

In the next step we set χn
i = ∆

1/2
n

(
f (αn

i )− E[f (αn
i )|F(i−1)∆n

]
)

and prove that

L(f )n
t =

[t/∆n]∑
i=1

χn
i

st−→ L(f )t .
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L(f )n
t

st−→ L(f )t

The following result follows from Jacod (1997).

Main Theorem: When

(i)
∑[t/∆n ]

i=1 E[|χn
i |2|F(i−1)∆n ]

P−→ Ft =
∫ t

0
v 2

s ds,

(ii)
∑[t/∆n ]

i=1 E[χn
i ∆n

i W |F(i−1)∆n ]
P−→ 0,

(iii)
∑[t/∆n ]

i=1 E[χn
i ∆n

i N|F(i−1)∆n ]
P−→ 0 for all bounded N with [W ,N] ≡ 0,

(iv)
∑[t/∆n ]

i=1 E[|χn
i |21{|χn

i |>ε}|F(i−1)∆n ]
P−→ 0 for all ε > 0,

then we obtain

L(f )n
t =

[t/∆n]∑
i=1

χn
i

st−→ L(f )t =

∫ t

0

vsdW ′
s .
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Application: Approximation of solutions of SDE’s

Let X be a continuous Itô semimartingale and Y is a strong solution of the SDE

Yt = Y0 +

∫ t

0

f (Ys)dXs , f ∈ C 1(R).

Let Y n be an Euler approximation of this solution, i.e.

dY n
t = f (Y n

φn(t))dXt , Y n
0 = Y0 , φn(t) = ∆n[t/∆n]

We are interested in the asymptotic behaviour of the approximation error

Un
t = Y n

t − Yt .

Set

Z n
t (X ) =

∫ t

0

(Xs − X∆n[s/∆n])dXs .
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Application: Approximation of solutions of SDE’s
The following result goes back to Jacod & Protter (1998).

Proposition: It holds that

∆−1/2
n Un

t
st−→ Ut ⇔ ∆−1/2

n Z n
t

st−→ Zt .

In this case U is a known functional of X and Z , i.e. U = F (X ,Z ).

Proposition: An application of Itô’s formula shows that

∆−1/2
n

(
V (X , 2,∆n)t − [X ,X ]t

)
= 2∆−1/2

n

∫ ∆n[t/∆n]

0

(Xs − X∆n[s/∆n])dXs .

We immediately deduce that

∆−1/2
n Z n

t
st−→ Zt =

1√
2

∫ t

0

σ2
s dW ′

s .
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CLT: the discontinuous case

Now we consider Itô semimartingales of the type

Xt = X0 +

∫ t

0

asds +

∫ t

0

σsdWs + (x1{|x|≤1}) ∗ (µt − νt) + (x1{|x|>1}) ∗ µt .

In this case we only consider functions of the form f (x) = |x |p, p ≥ 2. Recall
the law of large numbers

[t/∆n]∑
i=1

|∆n
i X |2 P−→ [X ,X ]t =

∫ t

0

σ2
s ds +

∑
s≤t

|∆Xs |2 ,

[t/∆n]∑
i=1

|∆n
i X |p P−→

∑
s≤t

|∆Xs |p for p > 2.

In the next step we will show the associated stable CLT’s (see Jacod (2008)).

Mark Podolskij

Multipower Variation



Motivation Law of large numbers Robust LLN’s Some applications Stable convergence Central limit theorems Robust CLT’s

CLT: the discontinuous case
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Stable CLT’s

For f (x) = |x |p (p ≥ 2) let us introduce the following process:

L(f )t =
∑
Tm≤t

f ′(∆XTm )
(√

κmσTm−Um +
√

1− κmσTm U ′m

)
.

Here (Tm)m≥1 denotes the jump times of X , (Um)m≥1 and (U ′m)m≥1 are i.i.d.
N(0, 1) and (κm)m≥1 are i.i.d. U([0, 1]).

Recall that for f (x) = x2 we have

L(f )t =
√

2

∫ t

0

σ2
s dW ′

s .

The processes (Um)m≥1, (U ′m)m≥1, (κm)m≥1 and (W ′
t )t≥0 are all defined on an

extension of (Ω,F ,P), are mutually independent and independent of F .
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Stable CLT’s

Theorem: Let f (x) = |x |p, p ≥ 2. We obtain the following results:

(i) For p > 3 and any fixed t > 0 it holds that

∆−1/2
n

( [t/∆n ]∑
i=1

|∆n
i X |p −

∑
s≤t

|∆Xs |p
)

st−→ L(f )t .

(ii) For p = 2 and any fixed t > 0 it holds that

∆−1/2
n

( [t/∆n ]∑
i=1

|∆n
i X |2 − [X ,X ]t

)
st−→ L(f )t + L(f )t .

Note that for p ∈ (2, 3] the CLT is not available. Furthermore, notice that the
above CLT’s never hold in a functional sense when jumps are present.

Mark Podolskij

Multipower Variation



Motivation Law of large numbers Robust LLN’s Some applications Stable convergence Central limit theorems Robust CLT’s

Stable CLT’s

Theorem: Let f (x) = |x |p, p ≥ 2. We obtain the following results:

(i) For p > 3 and any fixed t > 0 it holds that

∆−1/2
n

( [t/∆n ]∑
i=1

|∆n
i X |p −

∑
s≤t

|∆Xs |p
)

st−→ L(f )t .

(ii) For p = 2 and any fixed t > 0 it holds that

∆−1/2
n

( [t/∆n ]∑
i=1

|∆n
i X |2 − [X ,X ]t

)
st−→ L(f )t + L(f )t .

Note that for p ∈ (2, 3] the CLT is not available. Furthermore, notice that the
above CLT’s never hold in a functional sense when jumps are present.

Mark Podolskij

Multipower Variation



Motivation Law of large numbers Robust LLN’s Some applications Stable convergence Central limit theorems Robust CLT’s

A feasible CLT

For simplicity we consider the case p > 3. Assume that X and σ have no
common jumps. Then, for any t > 0,

∆−1/2
n

( [t/∆n]∑
i=1

|∆n
i X |p −

∑
s≤t

|∆Xs |p
)

st−→ MN
(

p2
∑
Tm≤t

|∆XTm |2(p−1)σ2
Tm

)
.

Now, the conditional variance can be estimated as follows:

p2

[t/∆n]∑
i=1

|∆n
i X |2(p−1)σ̂2

i∆n

P−→ p2
∑
Tm≤t

|∆XTm |2(p−1)σ2
Tm

where σ̂2
i∆n

= h−1
n (TRV (X , $)n

i∆n+hn
− TRV (X , $)n

i∆n
) with hn → 0 and

hn/∆n →∞ (see Ait-Sahalia & Jacod (2008) and Veraart (2008)).
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Alternative method

Consider again the case p > 3. Here we drop the assumption that X and σ have
no common jumps. In this case the limit process L(f )t is not mixed normal.

However, we may obtain a feasible CLT as follows: for any l = 1, . . . ,M
generate

L(f )n,l
t =

[t/∆n]∑
i=1

f ′(∆n
i X )

(√
κ

(l)
m σ̂i∆n−U(l)

m +

√
1− κ(l)

m σ̂i∆n U
′(l)
m

)
.

Conjecture: It holds that L(f )n,l
t

d−→ L(f )t as n,M →∞.
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Idea of the proof: the case p = 2

First, we use the decomposition X = X c + X d , where X c is a continuous part
of X and X d is a pure discontinuous part.

The proof is performed by showing that

∆−1/2
n

( [t/∆n]∑
i=1

|∆n
i X c |2 −

∫ t

0

σ2
s ds
)

st−→ L(f )t ,

∆−1/2
n

( [t/∆n]∑
i=1

|∆n
i X d |2 −

∑
s≤t

|∆Xs |2
)

P−→ 0,

2∆−1/2
n

[t/∆n]∑
i=1

∆n
i X d∆n

i X c st−→ L(f )t .
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An assumption on the jump activity

A transformation argument implies that the jump part X d of X has the form

X d
t =

∫ t

0

∫
R
κ ◦ δ(s, x)(µ− ν)(ds, dx) +

∫ t

0

∫
R
κ′ ◦ δ(s, x)µ(ds, dx),

where µ is a Poisson random measure with compensator ν(ds, dx) = ds ⊗ dx , κ
is a truncation function and κ′(x) = x − κ(x).

(L-q): We assume that δ is càglàd and there exists a sequence of stopping
times Sk ↗∞ and a sequence of functions (γk(x))k≥1 s.t. for s ≤ Tk

|δ(s, x)| ≤ γk(x) and

∫
R

(1 ∧ γq
k (x))dx <∞

for some q ∈ [0, 2].
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Robust CLT I: threshold estimator

Recall the convergence:

TRV (X , $)n
t =

[t/∆n]∑
i=1

|∆n
i X |21{|∆n

i X |≤c∆$
n }

ucp−→
∫ t

0

σ2
s ds

with $ ∈ (0, 1/2).

Theorem: Assume that X is a discontinuous Itô semimartingale and (L-q)
holds with q < 4$

2$−1 (it implies that $ > 1/4 and q < 1). Then

∆−1/2
n

(
TRV (X , $)n

t −
∫ t

0

σ2
s ds
)

st−→ L(f )t =
√

2

∫ t

0

σ2
s dW ′

s ,

where f (x) = x2 and L(f )t is the limit process in the continuous case.
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Intuition behind the proof

Let X d denote the discontinuous part of X . It is sufficient to prove that

∆−1/2
n TRV (X d , $)n

t = ∆−1/2
n

[t/∆n]∑
i=1

|∆n
i X d |21{|∆n

i X
d |≤c∆$

n }
P−→ 0.

For any δ > 0 small, it holds that

∆−1/2
n

[t/∆n]∑
i=1

|∆n
i X d |21{|∆n

i X
d |≤c∆$

n } ≤ ∆−1/2+$(2−q−δ)
n

[t/∆n]∑
i=1

|∆n
i X d |q+δ

∼ ∆−1/2+$(2−q−δ)
n

∑
s≤t

|∆X d
s |q+δ

If δ > 0 is small enough the latter converges to 0 in probability, because
q < 4$

2$−1 .
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Robust CLT II: multipower estimator

Recall the law of large numbers (pj ≥ 0 and p+ =
∑

pj):

V (X , p1, . . . pk ,∆n)t = ∆
1− p+

2
n

[t/∆n]−k+1∑
i=1

k∏
l=1

|∆n
i+l−1X |pl

ucp−→ mp1 · · ·mpk

∫ t

0

|σs |p
+

ds.

Theorem: Assume that X is a discontinuous Itô semimartingale and (L-q)
holds with q

2−q < pj < 1. Then

∆−1/2
n

(
V (X , p1, . . . pk ,∆n)t −mp1 · · ·mpk

∫ t

0

|σs |p
+

ds
)

st−→ A

∫ t

0

|σs |p
+

dW ′
s ,

where the constant A depends on p1, . . . , pk and the limit process remains the
same in the continuous case. That is, the CLT is robust to jumps.
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Intuition behind the proof
Let us consider the case k = 1, p1 = p and assume that the jump part of X is
a q-stable process Sq. Obviously, it suffices to show that

∆−1/2
n V (Sq, p,∆n)t = ∆

1−p
2

n

[t/∆n]∑
i=1

|∆n
i Sq|p P−→ 0.

Case p > q: The latter clearly holds, because p < 1 and

[t/∆n]∑
i=1

|∆n
i Sq|p P−→

∑
s≤t

|∆Sq|p <∞.

Case p < q: Due to the self-similarity of Sq we deduce

∆
1−p

2
n

[t/∆n]∑
i=1

|∆n
i Sq|p ∼ ∆

− 1+p
2 + p

q
n E[|Sq

1 |
p],

which converges to 0 as q
2−q < p.
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Thank you!
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