Stochastic Integrals and Conditional Full Support

Mikko S. Pakkanen

Department of Mathematics and Statistics University of Helsinki http://www.iki.fi/msp/

Workshop on Ambit Processes, Non-Semimartingales and Applications Sønderborg, January 28, 2010 Let E be a separable metric space and µ : ℬ(E) → [0,1] a Borel probability measure. Let E be a separable metric space and µ : ℬ(E) → [0, 1] a Borel probability measure.

Definition (Support)

We say that the *support* of μ is the smallest closed set $A \subset E$ such that $\mu(A) = 1$. We denote this set by $\text{supp}(\mu)$.

Let E be a separable metric space and µ : ℬ(E) → [0, 1] a Borel probability measure.

Definition (Support)

We say that the *support* of μ is the smallest closed set $A \subset E$ such that $\mu(A) = 1$. We denote this set by $\text{supp}(\mu)$.

Definition (Full support)

We say that μ has *full support* if supp $(\mu) = E$.

• Let $(X_t)_{t \in [0,T]}$ be a continuous process in some interval $I \subset \mathbb{R}$, defined on a complete probability space $(\Omega, \mathscr{F}, \mathbf{P})$.

- Let $(X_t)_{t \in [0,T]}$ be a continuous process in some interval $I \subset \mathbb{R}$, defined on a complete probability space $(\Omega, \mathscr{F}, \mathbf{P})$.
- Denote by C_x([u, v], I) the family of functions f ∈ C([u, v], I) s.t. f(u) = x ∈ I.

- Let $(X_t)_{t \in [0,T]}$ be a continuous process in some interval $I \subset \mathbb{R}$, defined on a complete probability space $(\Omega, \mathscr{F}, \mathbf{P})$.
- Denote by C_x([u, v], I) the family of functions f ∈ C([u, v], I) s.t. f(u) = x ∈ I.

Definition (Conditional full support)

The process X has *conditional full support* (CFS) with respect to filtration $\mathbb{F} = (\mathscr{F}_t)_{t \in [0, T]}$ if

- Let $(X_t)_{t \in [0,T]}$ be a continuous process in some interval $I \subset \mathbb{R}$, defined on a complete probability space $(\Omega, \mathscr{F}, \mathbf{P})$.
- Denote by C_x([u, v], I) the family of functions f ∈ C([u, v], I) s.t. f(u) = x ∈ I.

Definition (Conditional full support)

The process X has conditional full support (CFS) with respect to filtration $\mathbb{F} = (\mathscr{F}_t)_{t \in [0, T]}$ if **1** X is adapted to \mathbb{F} ,

- Let $(X_t)_{t \in [0,T]}$ be a continuous process in some interval $I \subset \mathbb{R}$, defined on a complete probability space $(\Omega, \mathscr{F}, \mathbf{P})$.
- Denote by C_x([u, v], I) the family of functions f ∈ C([u, v], I) s.t. f(u) = x ∈ I.

Definition (Conditional full support)

- The process X has conditional full support (CFS) with respect to filtration $\mathbb{F} = (\mathscr{F}_t)_{t \in [0, T]}$ if
 - **1** X is adapted to \mathbb{F} ,
 - **2** for all $t \in [0, T)$ and **P**-almost all $\omega \in \Omega$,

$$\operatorname{supp} \left(\operatorname{Law} \left[(X_u)_{u \in [t,T]} \middle| \mathscr{F}_t \right] (\omega) \right) = C_{X_t(\omega)}([t,T],I).$$

- Let $(X_t)_{t \in [0,T]}$ be a continuous process in some interval $I \subset \mathbb{R}$, defined on a complete probability space $(\Omega, \mathscr{F}, \mathbf{P})$.
- Denote by C_x([u, v], I) the family of functions f ∈ C([u, v], I) s.t. f(u) = x ∈ I.

Definition (Conditional full support)

- The process X has conditional full support (CFS) with respect to filtration $\mathbb{F} = (\mathscr{F}_t)_{t \in [0, T]}$ if
 - **1** X is adapted to \mathbb{F} ,
 - **2** for all $t \in [0, T)$ and **P**-almost all $\omega \in \Omega$,

$$\operatorname{supp} \left(\operatorname{Law} \left[(X_u)_{u \in [t,T]} \middle| \mathscr{F}_t \right] (\omega) \right) = C_{X_t(\omega)}([t,T],I).$$

For price processes $I = \mathbb{R}_+$, otherwise $I = \mathbb{R}$. Conventionally $\mathbb{F} = \mathbb{F}^X$ (the usual augmentation).

 Guasoni, Rásonyi and Schachermayer (2008), henceforth GRS, have shown that if a price process has CFS, then it is free from arbitrage under arbitrarily small *transaction costs*.

- Guasoni, Rásonyi and Schachermayer (2008), henceforth GRS, have shown that if a price process has CFS, then it is free from arbitrage under arbitrarily small *transaction costs*.
- Additionally, CFS facilitates solving superreplication problems under small proportional transaction costs.

- Guasoni, Rásonyi and Schachermayer (2008), henceforth GRS, have shown that if a price process has CFS, then it is free from arbitrage under arbitrarily small *transaction costs*.
- Additionally, CFS facilitates solving superreplication problems under small proportional transaction costs.
- More precisely, GRS have shown that if price process (*P*_t)_{t∈[0,T]} has CFS,

- Guasoni, Rásonyi and Schachermayer (2008), henceforth GRS, have shown that if a price process has CFS, then it is free from arbitrage under arbitrarily small *transaction costs*.
- Additionally, CFS facilitates solving superreplication problems under small proportional transaction costs.
- More precisely, GRS have shown that if price process (P_t)_{t∈[0,T]} has CFS, then the superreplication price of a European (vanilla) contingent claim g(P_T) under ε-sized proportional transaction costs

- Guasoni, Rásonyi and Schachermayer (2008), henceforth GRS, have shown that if a price process has CFS, then it is free from arbitrage under arbitrarily small *transaction costs*.
- Additionally, CFS facilitates solving superreplication problems under small proportional transaction costs.
- More precisely, GRS have shown that if price process (P_t)_{t∈[0,T]} has CFS, then the superreplication price of a European (vanilla) contingent claim g(P_T) under ε-sized proportional transaction costs tends to

 $\hat{g}(P_0)$ when $\varepsilon \downarrow 0$,

where \hat{g} is the *concave envelope* of g.

Frictionless pricing models

 Bender, Sottinen, and Valkeila (2008) have shown that if a price process has CFS and well-defined *pathwise quadratic variation*, then it admits no arbitrage opportunities in a wide class of trading strategies.

Frictionless pricing models

Bender, Sottinen, and Valkeila (2008) have shown that if a price process has CFS and well-defined *pathwise quadratic variation*, then it admits no arbitrage opportunities in a wide class of trading strategies.

Beyond mathematical finance?

 CFS appears to be a rather fundamental property that might be worth studying also from a purely mathematical point of view.

Frictionless pricing models

Bender, Sottinen, and Valkeila (2008) have shown that if a price process has CFS and well-defined *pathwise quadratic variation*, then it admits no arbitrage opportunities in a wide class of trading strategies.

Beyond mathematical finance?

 CFS appears to be a rather fundamental property that might be worth studying also from a purely mathematical point of view.

...

Gaussian processes

• Fractional Brownian motion with $H \in (0, 1)$ (GRS),

Gaussian processes

- Fractional Brownian motion with $H \in (0, 1)$ (GRS),
- Brownian moving averages (Cherny, 2008),

Gaussian processes

- Fractional Brownian motion with $H \in (0, 1)$ (GRS),
- Brownian moving averages (Cherny, 2008),
- Continuous Gaussian processes with stationary increments satisfying a certain spectral density condition (Gasbarra, Sottinen, and van Zanten, 2008).

Gaussian processes

- Fractional Brownian motion with $H \in (0, 1)$ (GRS),
- Brownian moving averages (Cherny, 2008),
- Continuous Gaussian processes with stationary increments satisfying a certain spectral density condition (Gasbarra, Sottinen, and van Zanten, 2008).

Markov processes

Certain *diffusions* (Stroock and Varadhan, 1972; GRS).

Gaussian processes

- Fractional Brownian motion with $H \in (0, 1)$ (GRS),
- Brownian moving averages (Cherny, 2008),
- Continuous Gaussian processes with stationary increments satisfying a certain spectral density condition (Gasbarra, Sottinen, and van Zanten, 2008).

Markov processes

Certain *diffusions* (Stroock and Varadhan, 1972; GRS).

Other

Riemann integrals of processes with CFS (GRS).

Proposition (Small-ball probabilities)

Let $(X_t)_{t \in [0,T]}$ be a continuous process in \mathbb{R} , adapted to filtration $\mathbb{F} = (\mathscr{F}_t)_{t \in [0,T]}$.

Proposition (Small-ball probabilities)

Let $(X_t)_{t \in [0,T]}$ be a continuous process in \mathbb{R} , adapted to filtration $\mathbb{F} = (\mathscr{F}_t)_{t \in [0,T]}$. Then, X has CFS w.r.t. \mathbb{F} if and only if

$$\mathbf{P}\left[\sup_{u\in[t,T]}|X_u-X_t-f(u)|<\varepsilon\Big|\mathscr{F}_t\right]>0\quad\mathbf{P}\text{-a.s.}$$

Proposition (Small-ball probabilities)

Let $(X_t)_{t \in [0,T]}$ be a continuous process in \mathbb{R} , adapted to filtration $\mathbb{F} = (\mathscr{F}_t)_{t \in [0,T]}$. Then, X has CFS w.r.t. \mathbb{F} if and only if

$$\mathbf{P}\left[\sup_{u\in[t,T]}|X_u-X_t-f(u)|<\varepsilon\bigg|\mathscr{F}_t\right]>0\quad\mathbf{P}\text{-a.s.}$$

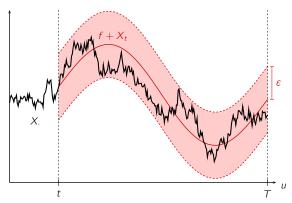
for all $t \in [0, T)$, $f \in C_0([t, T], \mathbb{R})$, and $\varepsilon > 0$.

Some characterizations of CFS

Intuitively, this characterization means that for every $t \in [0, T)$, $f \in C_0([t, T], \mathbb{R})$, $\varepsilon > 0$, and for almost every "past", the following event occurs with a positive \mathscr{F}_t -conditional probability:

Some characterizations of CFS

Intuitively, this characterization means that for every $t \in [0, T)$, $f \in C_0([t, T], \mathbb{R})$, $\varepsilon > 0$, and for almost every "past", the following event occurs with a positive \mathscr{F}_t -conditional probability:



Proposition (Usual augmentation)

Again, let $(X_t)_{t \in [0,T]}$ be a continuous process in $I \subset \mathbb{R}$, adapted to filtration $\mathbb{F} = (\mathscr{F}_t)_{t \in [0,T]}$.

Proposition (Usual augmentation)

Again, let $(X_t)_{t \in [0,T]}$ be a continuous process in $I \subset \mathbb{R}$, adapted to filtration $\mathbb{F} = (\mathscr{F}_t)_{t \in [0,T]}$. Then, X has CFS w.r.t. \mathbb{F} if and only if it has CFS w.r.t. the usual augmentation of \mathbb{F} .

Proposition (Usual augmentation)

Again, let $(X_t)_{t \in [0,T]}$ be a continuous process in $I \subset \mathbb{R}$, adapted to filtration $\mathbb{F} = (\mathscr{F}_t)_{t \in [0,T]}$. Then, X has CFS w.r.t. \mathbb{F} if and only if it has CFS w.r.t. the usual augmentation of \mathbb{F} .

Proposition (Law invariance)

Let $(X_t)_{t \in [0,T]}$ and $(Y_t)_{t \in [0,T]}$ be continuous processes in $I \subset \mathbb{R}$, such that $X \stackrel{\text{law}}{=} Y$. Then, X has CFS w.r.t. \mathbb{F}^X if and only if Y has CFS w.r.t. \mathbb{F}^Y .

Theorem (Independent integrands and Brownian integrators)

Suppose that

• $(H_t)_{t \in [0,T]}$ is a continuous process,

Theorem (Independent integrands and Brownian integrators)

Suppose that

- $(H_t)_{t \in [0,T]}$ is a continuous process,
- $(k_t)_{t \in [0,T]}$ is a measurable process s.t. $\int_0^T k_s^2 ds < \infty$, and

Theorem (Independent integrands and Brownian integrators)

Suppose that

- $(H_t)_{t \in [0,T]}$ is a continuous process,
- $(k_t)_{t \in [0,T]}$ is a measurable process s.t. $\int_0^T k_s^2 ds < \infty$, and
- (W_t)_{t∈[0,T]} is a standard Brownian motion independent of H and k.

Theorem (Independent integrands and Brownian integrators)

Suppose that

- $(H_t)_{t \in [0,T]}$ is a continuous process,
- $(k_t)_{t \in [0,T]}$ is a measurable process s.t. $\int_0^T k_s^2 ds < \infty$, and
- (W_t)_{t∈[0,T]} is a standard Brownian motion independent of H and k.

Let us define

$$Z_t := H_t + \int_0^t k_s \mathrm{d} W_s, \quad t \in [0, T].$$

Theorem (Independent integrands and Brownian integrators)

Suppose that

- $(H_t)_{t \in [0,T]}$ is a continuous process,
- $(k_t)_{t \in [0,T]}$ is a measurable process s.t. $\int_0^T k_s^2 ds < \infty$, and
- (W_t)_{t∈[0,T]} is a standard Brownian motion independent of H and k.

Let us define

$$Z_t := H_t + \int_0^t k_s \mathrm{d} W_s, \quad t \in [0, T].$$

If we have

meas
$$(\{t \in [0, T] : k_t = 0\}) = 0$$
 P-a.s.,

Theorem (Independent integrands and Brownian integrators)

Suppose that

- $(H_t)_{t \in [0,T]}$ is a continuous process,
- $(k_t)_{t \in [0,T]}$ is a measurable process s.t. $\int_0^T k_s^2 ds < \infty$, and
- (W_t)_{t∈[0,T]} is a standard Brownian motion independent of H and k.

Let us define

$$Z_t := H_t + \int_0^t k_s \mathrm{d} W_s, \quad t \in [0, T].$$

If we have

$$meas(\{t \in [0, T] : k_t = 0\}) = 0$$
 P-a.s.,

then Z has CFS.

Remark

By Fubini's theorem, it suffices that $k_t \neq 0$ a.s. for all $t \in [0, T]$.

Remark

By Fubini's theorem, it suffices that $k_t \neq 0$ a.s. for all $t \in [0, T]$.

Remark

The assumption about *independence* between W and (H, k) cannot be dispensed with in general without imposing additional conditions.

Remark

By Fubini's theorem, it suffices that $k_t \neq 0$ a.s. for all $t \in [0, T]$.

Remark

The assumption about *independence* between W and (H, k) cannot be dispensed with in general without imposing additional conditions. Namely, if e.g.

$$H_t := 1, \quad k_t := e^{W_t - \frac{1}{2}t}, \quad t \in [0, T],$$

Remark

By Fubini's theorem, it suffices that $k_t \neq 0$ a.s. for all $t \in [0, T]$.

Remark

The assumption about *independence* between W and (H, k) cannot be dispensed with in general without imposing additional conditions. Namely, if e.g.

$$H_t := 1, \quad k_t := e^{W_t - \frac{1}{2}t}, \quad t \in [0, T],$$

then $Z = k = \mathscr{E}(W)$, the *Doléans exponential* of *W*,

Remark

By Fubini's theorem, it suffices that $k_t \neq 0$ a.s. for all $t \in [0, T]$.

Remark

The assumption about *independence* between W and (H, k) cannot be dispensed with in general without imposing additional conditions. Namely, if e.g.

$$H_t := 1, \quad k_t := e^{W_t - \frac{1}{2}t}, \quad t \in [0, T],$$

then $Z = k = \mathscr{E}(W)$, the *Doléans exponential* of W, which is stricly positive and thus does not have CFS, if understood as a process in \mathbb{R} .

General stochastic volatility (SV) model

Let us consider price process $(P_t)_{t \in [0,T]}$ in \mathbb{R}_+ given by

$$dP_t = P_t (f(t, V_t) dt + \rho g(t, V_t) dB_s + \sqrt{1 - \rho^2} g(t, V_t) dW_s),$$

$$P_0 = p_0 \in \mathbb{R}_+,$$

General stochastic volatility (SV) model

Let us consider price process $(P_t)_{t \in [0,T]}$ in \mathbb{R}_+ given by

$$dP_t = P_t (f(t, V_t) dt + \rho g(t, V_t) dB_s + \sqrt{1 - \rho^2} g(t, V_t) dW_s),$$

$$P_0 = p_0 \in \mathbb{R}_+,$$

•
$$f,g \in C([0,T] \times \mathbb{R}^d,\mathbb{R})$$
,

General stochastic volatility (SV) model

Let us consider price process $(P_t)_{t \in [0,T]}$ in \mathbb{R}_+ given by

$$dP_t = P_t (f(t, V_t) dt + \rho g(t, V_t) dB_s + \sqrt{1 - \rho^2} g(t, V_t) dW_s),$$

$$P_0 = p_0 \in \mathbb{R}_+,$$

- $f,g \in C([0,T] \times \mathbb{R}^d,\mathbb{R})$,
- (B, W) is a planar Brownian motion,

General stochastic volatility (SV) model

Let us consider price process $(P_t)_{t \in [0,T]}$ in \mathbb{R}_+ given by

$$dP_t = P_t (f(t, V_t) dt + \rho g(t, V_t) dB_s + \sqrt{1 - \rho^2} g(t, V_t) dW_s),$$

$$P_0 = p_0 \in \mathbb{R}_+,$$

- $f,g \in C([0,T] \times \mathbb{R}^d,\mathbb{R})$,
- (B, W) is a planar Brownian motion,
- $ho \in (-1,1)$,

General stochastic volatility (SV) model

Let us consider price process $(P_t)_{t\in[0,T]}$ in \mathbb{R}_+ given by

$$dP_t = P_t (f(t, V_t) dt + \rho g(t, V_t) dB_s + \sqrt{1 - \rho^2} g(t, V_t) dW_s),$$

$$P_0 = p_0 \in \mathbb{R}_+,$$

- $f,g \in C([0,T] \times \mathbb{R}^d,\mathbb{R})$,
- (B, W) is a planar Brownian motion,
- $ho \in (-1,1)$,
- V is a (measurable) process in \mathbb{R}^d s.t. $g(t, V_t) \neq 0$ a.s. for all $t \in [0, T]$,

General stochastic volatility (SV) model

Let us consider price process $(P_t)_{t \in [0,T]}$ in \mathbb{R}_+ given by

$$dP_t = P_t (f(t, V_t) dt + \rho g(t, V_t) dB_s + \sqrt{1 - \rho^2} g(t, V_t) dW_s),$$

$$P_0 = p_0 \in \mathbb{R}_+,$$

- $f,g \in C([0,T] \times \mathbb{R}^d,\mathbb{R})$,
- (B, W) is a planar Brownian motion,
- $ho \in (-1, 1)$,
- V is a (measurable) process in \mathbb{R}^d s.t. $g(t, V_t) \neq 0$ a.s. for all $t \in [0, T]$,
- (B, V) is *independent* of W,

General stochastic volatility (SV) model

Let us consider price process $(P_t)_{t \in [0,T]}$ in \mathbb{R}_+ given by

$$dP_t = P_t (f(t, V_t) dt + \rho g(t, V_t) dB_s + \sqrt{1 - \rho^2} g(t, V_t) dW_s),$$

$$P_0 = p_0 \in \mathbb{R}_+,$$

- $f,g \in C([0,T] \times \mathbb{R}^d,\mathbb{R})$,
- (B, W) is a planar Brownian motion,
- $ho \in (-1,1)$,
- V is a (measurable) process in \mathbb{R}^d s.t. $g(t, V_t) \neq 0$ a.s. for all $t \in [0, T]$,
- (B, V) is *independent* of W,
- but V may depend on B.

General stochastic volatility (SV) model

To see why P has CFS,

General stochastic volatility (SV) model

To see why P has CFS, write using Itô's formula:

$$\log P_t$$

$$= \underbrace{\log p_0 + \int_0^t \left(f(s, V_s) - \frac{1}{2}g(s, V_s)^2\right) ds + \int_0^t \rho g(s, V_s) dB_s}_{=:H_t}$$

$$+ \int_0^t \underbrace{\sqrt{1 - \rho^2}g(s, V_s)}_{=:k_s} dW_s.$$

General stochastic volatility (SV) model

To see why P has CFS, write using Itô's formula:

$$\log P_t$$

$$= \underbrace{\log p_0 + \int_0^t \left(f(s, V_s) - \frac{1}{2}g(s, V_s)^2\right) ds + \int_0^t \rho g(s, V_s) dB_s}_{=:H_t}$$

$$+ \int_0^t \underbrace{\sqrt{1 - \rho^2}g(s, V_s)}_{=:k_s} dW_s.$$

Since W is independent of B and V, the previous Theorem implies that $\log P$ has CFS

General stochastic volatility (SV) model

To see why P has CFS, write using Itô's formula:

$$\log P_t$$

$$= \underbrace{\log p_0 + \int_0^t \left(f(s, V_s) - \frac{1}{2}g(s, V_s)^2\right) ds + \int_0^t \rho g(s, V_s) dB_s}_{=:H_t}$$

$$+ \int_0^t \underbrace{\sqrt{1 - \rho^2}g(s, V_s)}_{=:k_s} dW_s.$$

Since W is independent of B and V, the previous Theorem implies that $\log P$ has CFS—from which it follows that P has CFS (when P is seen as a process in \mathbb{R}_+).

Some well-known special cases of the general SV model

 V is a diffusion (Heston [leverage], Hull–White, Scott, Stein–Stein, Wiggins),

Some well-known special cases of the general SV model

- V is a diffusion (Heston [leverage], Hull–White, Scott, Stein–Stein, Wiggins),
- V is a non-semimartingale (Comte-Renault [long memory in volatility]),

Some well-known special cases of the general SV model

- V is a diffusion (Heston [leverage], Hull–White, Scott, Stein–Stein, Wiggins),
- V is a non-semimartingale (Comte-Renault [long memory in volatility]),
- V is discontinuous (Barndorff-Nielsen-Shephard [subordinator-driven volatility], Guo [regime switching]).

Theorem (Progressive integrands and Brownian integrators)

Suppose that

• $(Y_t)_{t \in [0,T]}$ and $(W_t)_{t \in [0,T]}$ are continuous processes,

Theorem (Progressive integrands and Brownian integrators)

- $(Y_t)_{t \in [0,T]}$ and $(W_t)_{t \in [0,T]}$ are continuous processes,
- *h* and *k* are progressive maps $[0, T] \times C([0, T], \mathbb{R})^2 \rightarrow \mathbb{R}$,

Theorem (Progressive integrands and Brownian integrators)

- $(Y_t)_{t \in [0,T]}$ and $(W_t)_{t \in [0,T]}$ are continuous processes,
- *h* and *k* are progressive maps $[0, T] \times C([0, T], \mathbb{R})^2 \rightarrow \mathbb{R}$,
- ξ is a random variable,

Theorem (Progressive integrands and Brownian integrators)

- $(Y_t)_{t \in [0,T]}$ and $(W_t)_{t \in [0,T]}$ are continuous processes,
- *h* and *k* are progressive maps $[0, T] \times C([0, T], \mathbb{R})^2 \rightarrow \mathbb{R}$,
- ξ is a random variable,

• and
$$\mathscr{F}_t := \{\xi, Y_s, W_s : s \in [0, t]\}.$$

Theorem (Progressive integrands and Brownian integrators)

Suppose that

- $(Y_t)_{t \in [0,T]}$ and $(W_t)_{t \in [0,T]}$ are continuous processes,
- *h* and *k* are progressive maps $[0, T] \times C([0, T], \mathbb{R})^2 \rightarrow \mathbb{R}$,
- ξ is a random variable,
- and $\mathscr{F}_t := \{\xi, Y_s, W_s : s \in [0, t]\}.$

If W is an $(\mathscr{F}_t)_{t\in[0,T]}$ -Brownian motion and

$$|h(\cdot)| \leq \overline{h}, \quad \overline{k}^{-1} \leq |k(\cdot)| \leq \overline{k} \quad \textit{for some } \overline{h} > 0 \textit{ and } \overline{k} > 1,$$

Theorem (Progressive integrands and Brownian integrators)

Suppose that

- $(Y_t)_{t \in [0,T]}$ and $(W_t)_{t \in [0,T]}$ are continuous processes,
- *h* and *k* are progressive maps $[0, T] \times C([0, T], \mathbb{R})^2 \rightarrow \mathbb{R}$,
- ξ is a random variable,

• and
$$\mathscr{F}_t := \{\xi, Y_s, W_s : s \in [0, t]\}.$$

If W is an $(\mathscr{F}_t)_{t\in[0,T]}$ -Brownian motion and

$$|h(\cdot)| \leq \overline{h}, \quad \overline{k}^{-1} \leq |k(\cdot)| \leq \overline{k} \quad \text{for some } \overline{h} > 0 \text{ and } \overline{k} > 1,$$

then

$$Z_t := \xi + \int_0^t h(s, Y, W) \mathrm{d}s + \int_0^t k(s, Y, W) \mathrm{d}W_s, \quad t \in [0, T]$$

has CFS.

Weak solutions of stochastic differential equations

Let us consider price process $(P_t)_{t\in[0,T]}$ in \mathbb{R}_+ given by

$$\mathrm{d}P_t = \mu(t, P)\mathrm{d}t + \sigma(t, P)\mathrm{d}W_t, \quad P_0 = p_0 \in \mathbb{R}_+,$$

where μ and σ are progressive maps $[0, T] \times C([0, T], \mathbb{R}_+)^2 \to \mathbb{R}$.

Weak solutions of stochastic differential equations

Let us consider price process $(P_t)_{t\in[0,T]}$ in \mathbb{R}_+ given by

$$dP_t = \mu(t, P)dt + \sigma(t, P)dW_t, \quad P_0 = p_0 \in \mathbb{R}_+,$$

where μ and σ are progressive maps $[0, T] \times C([0, T], \mathbb{R}_+)^2 \to \mathbb{R}$. We assume that

 \blacksquare there exist $\overline{\mu}>0$ and $\overline{\sigma}>1$ such that

 $|\mu(t,x)| \leq \overline{\mu}x(t), \quad \overline{\sigma}^{-1}x(t) \leq |\sigma(t,x)| \leq \overline{\sigma}x(t)$

for all $x \in C_{p_0}([0, T], \mathbb{R}_+)$ and $t \in [0, T]$,

Weak solutions of stochastic differential equations

Let us consider price process $(P_t)_{t\in[0,T]}$ in \mathbb{R}_+ given by

$$dP_t = \mu(t, P)dt + \sigma(t, P)dW_t, \quad P_0 = p_0 \in \mathbb{R}_+,$$

where μ and σ are progressive maps $[0, T] \times C([0, T], \mathbb{R}_+)^2 \to \mathbb{R}$. We assume that

 \blacksquare there exist $\overline{\mu}>0$ and $\overline{\sigma}>1$ such that

 $|\mu(t,x)| \leq \overline{\mu}x(t), \quad \overline{\sigma}^{-1}x(t) \leq |\sigma(t,x)| \leq \overline{\sigma}x(t)$

for all $x \in C_{p_0}([0, T], \mathbb{R}_+)$ and $t \in [0, T]$,

• the equation has at least a weak solution.

Weak solutions of stochastic differential equations

Let us consider price process $(P_t)_{t\in[0,T]}$ in \mathbb{R}_+ given by

$$\mathrm{d}P_t = \mu(t, P)\mathrm{d}t + \sigma(t, P)\mathrm{d}W_t, \quad P_0 = p_0 \in \mathbb{R}_+,$$

where μ and σ are progressive maps $[0, T] \times C([0, T], \mathbb{R}_+)^2 \to \mathbb{R}$. We assume that

 \blacksquare there exist $\overline{\mu}>0$ and $\overline{\sigma}>1$ such that

 $|\mu(t,x)| \leq \overline{\mu}x(t), \quad \overline{\sigma}^{-1}x(t) \leq |\sigma(t,x)| \leq \overline{\sigma}x(t)$

for all $x \in C_{p_0}([0, T], \mathbb{R}_+)$ and $t \in [0, T]$,

• the equation has at least a weak solution.

Setting Y := P, we find that the previous Theorem applies to log *P*, and hence that *P* has CFS (similarly as with the SV model).

Theorem (Independent integrands and general integrators)

Suppose that

• $(H_t)_{t \in [0,T]}$ is a continuous process,

Theorem (Independent integrands and general integrators)

- $(H_t)_{t \in [0,T]}$ is a continuous process,
- $(k_t)_{t \in [0,T]}$ is a process of finite variation, and

Theorem (Independent integrands and general integrators)

- $(H_t)_{t \in [0,T]}$ is a continuous process,
- $(k_t)_{t \in [0,T]}$ is a process of finite variation, and
- $(X_t)_{t \in [0,T]}$ is a continuous process independent of H and k.

Theorem (Independent integrands and general integrators)

- $(H_t)_{t \in [0,T]}$ is a continuous process,
- $(k_t)_{t \in [0,T]}$ is a process of finite variation, and
- $(X_t)_{t \in [0,T]}$ is a continuous process independent of H and k. Let us define

$$Z_t := H_t + \int_0^t k_s \mathrm{d}X_s, \quad t \in [0, T].$$

Theorem (Independent integrands and general integrators)

Suppose that

- $(H_t)_{t \in [0,T]}$ is a continuous process,
- $(k_t)_{t \in [0,T]}$ is a process of finite variation, and
- $(X_t)_{t \in [0,T]}$ is a continuous process independent of H and k. Let us define

$$Z_t := H_t + \int_0^t k_s \mathrm{d}X_s, \quad t \in [0, T].$$

If X has CFS and

$$\inf_{t\in[0,T]}|k_t|>0 \quad \mathbf{P}\text{-}a.s.,$$

Theorem (Independent integrands and general integrators)

Suppose that

- $(H_t)_{t \in [0,T]}$ is a continuous process,
- $(k_t)_{t \in [0,T]}$ is a process of finite variation, and
- $(X_t)_{t \in [0,T]}$ is a continuous process independent of H and k. Let us define

$$Z_t := H_t + \int_0^t k_s \mathrm{d}X_s, \quad t \in [0, T].$$

If X has CFS and

$$\inf_{t\in[0,T]}|k_t|>0 \quad \mathbf{P}\text{-}a.s.,$$

then Z has CFS.

References

- C. Bender, T. Sottinen, E. Valkeila, Pricing by hedging and no-arbitrage beyond semimartingales, Finance Stoch. 12 (4) (2008) 441–468.
- A. Cherny, Brownian moving averages have conditional full support, Ann. Appl. Probab. 18 (5) (2008) 1825–1830.
- D. Gasbarra, T. Sottinen, H. van Zanten, Conditional full support of Gaussian processes with stationary increments, Preprint 487, Department of Mathematics and Statistics, University of Helsinki (2008).
- P. Guasoni, M. Rásonyi, W. Schachermayer, Consistent price systems and face-lifting pricing under transaction costs, Ann. Appl. Probab. 18 (2) (2008) 491–520.
- M. S. Pakkanen, Stochastic integrals and conditional full support, arXiv:0811.1847 (2009).
- D. W. Stroock, S. R. S. Varadhan, On the support of diffusion processes with applications to the strong maximum principle, in: Proc. Sixth Berkeley Symp. on Math. Statist. Probab. III: Probability theory, Univ. California Press, Berkeley, Calif., 1972.