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For a function f: [0,1] — R and anumber 0 < p <
oo, the p-variation of f Is

vp(f) :=sup { SO - f(tj—1)|p} < oo,

where the supremum is taken over all partitions 0 =
to <t1 < - <tm=1,m = 1,2,..., of the
interval [0, 1].

If vp(f) < +oo then we say that f has finite p-
variation and W,[0, 1] is the set of all such func-
tions. This set is a Banach space with the norm

[Ny == 11 f lsup + Up(f)l/p-

For a comparison with the a-Holder, o € (0, 1], pro-
perty of f,if p := 1/a, then

Zlf(t)—f(t] DIP<CP S (t—t; 1) = CP

1=1
and so vp(f) < CP < 4o0. But note that a finite p-

variation property can have discontinuous functions,
such as sample functions of stable processes.



Let X1, X5, ... be real random variables. For each
n=1,2,... letS, bethe n-th partial sum process

Sn(t) == X1+ -+ X4, t€10,1],
Thus foreachn =1,2,...and t € [0, 1],

e

0, ift € [0,1/n),
Sn(t) = { X1 F o+ X it e 5,
ke{l,...,n— 1},
X1+ Xp, ift=1.

Then for any p € (0, c0),

m
vp(Sn) = max{ Z |ij_1+1 4. 4 ij|p} 7
=1

where the maximum is taken over 0 = kg < --- <
km =nand 1 <m <n.

J. Bretagnolle (1972): given p € (0, 2) there exists
a finite constant C, such that

i=1
provided X1, X5, ... are independent, F| X;|P < oo
and EX; =0ifp > 1.

n n
(Z B|X; [P S) Bup(Sn) < Cp 3 EIX,IP,
1=1



Suppose that X1, X, ... are independent identical-
ly distributed real random variables, £EX; = 0 and
EX? = 1. Let Lz := max{1,logz}, z > O.

J. Qian (1998): v>(S,) = Op(nLLn) as n — oo.
Also, O p(nLLn) cannot be replaced by op,(nLLn),
if in addition E|X1|%T¢ < oo for some e > 0.

Let W be a standard Wiener process on the interval
[0,1]. Due to results of N. Wiener (1923) and P.
Lévy (1940):

vp(W) < 400 almost surely iff p > 2,

and vo> (W) = 400 almost surely.

More precise information can be obtained in terms
of ¢-variation, defined as p-variation except that the
power function x — zP, x > 0, Is replaced by a
function ¢.

S. J. Taylor (1972): vy, (W) < +o0 a. s., where

wi(z) ;= 22/LL(1/z), O0<z<e ®

Also, v, (W) = 4oo a. s., for any + such, that
Y1(z) = o(y¥(z)) asz | O.



Given a sequence X4, Xo,... of i.i.d. real random
variables having a d.f. F', let F;, be the empirical d.f.
based on X1,..., X,.

R.M. Dudley (1992): Let 2 < p < oo and let F' be a
uniform d.f. The convergence in law

Vvn(Fy, —F)= B in Wpl0, 1],
as n — oo holds, where B is a Brownian bridge.

Y.-Ch. Huang and R.M. Dudley (2001): For 2 <
p < oo there is a finite constant C, such that if F' is
any d.f. on R, then on some probability space there
exist X1, Xo, ... Li.d. r.v's with d.f. F" and Brownian
bridges B, such that for all n,

E|lvn(Fp — F) — BpoF || < Cpn{27P)/(2P),
and the order of bound is best possible in general.

J. Qian (1998): Let 1 < p < 2. There exists a finite
constant ¢ such, that a. s.

o NE=Fll [ Fn — Fl| )
LIS “nrglorg)f nl/p—l = |I72n_>SoléD nl/p—l sc

These are the main facts in the present context
known up till recently.



R. NorvaiSa and A. RacCkauskas: Let X7, Xo,...
be a sequence of independent identically distributed
random variables and let S;, be the n-th partial sum
process. The convergence in law

n~1/28, = oW inW,[0,1],

as n — oo holds if and only if EX7 = 0 and 02 :=
EX% < 0.

It is interesting to compare this fact with the related
convergence of smoothed partial sum processes wi-
th respect to the a-Holder norm. Let S, be a (ran-
dom) function obtained from S;, by linear interpola-
tion between points

o) (s (50))

k=0,1,...,n— 1.

A. RaCkauskas and C. Suquet (2004): Let p > 2.
Convergence in law

n~ 125, = oW in H?/p[O, 1],
as n — oo holds if and only if F X4 = 0 and

lim ¢Pr({|Xq] > ¢1/2-1/py = 0.



Sketch of proof. The proof rests on some results
concerning a problem of representing linear boun-
ded functionals on the Banach space W;[0, 1]. The
following fact (with a different constant) is due to Lo-
ve, E. R. and Young L. C. (1937):

Theorem: Let1 < q < oo, 1/p+ 1/q = 1, let
L: Wy[0,1] — R be a linear bounded functional
and let F'(t) := L(1g ), t € [0, 1]. Then

1F |y < 4sup{|L(H)]: f e Fq} = 4[L]| £,
where Fq 1= {f € Wy[0, 1]: || flljg < 1}

To use this fact we represent the n-th partial sum
process as follows

- 1 2 .
nH280(8) = = - X1, (i/m) = vn(ifo )
1=1

NG
where for any function f: [0,1] — R
R e

n(h) = = 3 Xl (/).

Then we use a theory of stochastic processes in-
dexed by functions.



For each f € £2([0, 1], )), let

v(f) = /Olde,

where the integral is defined in the 1t6 sense. Then
v is the isonormal Gaussian process in the Hilbert
space L2([0, 1], A). When f € W,[0,1]and ¢ < 2,
then v(f) exists as the Riemann-Stieltjes integral
and

0% & o, > (1. 2
Var(ua(£)) = == 3 f2(2) = 0 | f2dx =: 0]
1=1

By Lindeberg’s CLT, L(vn(f)) — N(O,0¢) asn —
oo for each (fixed) f € Wq[O, 1].

In fact we need a convergence which is uniform over
a class of functions

Fq=1{f € Wgl0,1]: |Ifllfy < 1},
which is the unit ball in the Banach space W, |0, 1].



Convergence in law (basic facts).

Let M be a metric space and let B be a o-algebra of
its Borel sets. Let (€2, A, P) be a probability space.
If a function X: 2 — M is A — B measurable, then
It is called a random variable (r.v.). Alaw ofar.v. X
Is a measure £(X) on B with values

L(X)(B)=P{we X(w)e B}), BeB.

A sequence L(Zy) of laws on a metric space con-
verges (weakly) to a law £(Z), if for each h €
Cyp(M),

Eh(Zn) :/MhdL(Zn) —>/Mhd£(Z) — En(2).

The problem comes from the fact that many interes-
ting functions are not r.v's. This is the case when
M 1s not separable metric space since the Borel o-
algebra B in such a space is too big to carry a o-
additive measure.

The Banach space (Wy[0,1], || - [[f;)). as well as
the Banach space (/o (F), || - || £) are not seprable.
The set of indicator functions {1y ;j: ¢t € [0,1]} is
not countable and not dense.
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The non-separability problem is solved by using the
following extension of the classical weak convergen-
ce notion.

Hoffmann-Jagrgensen (1984): Let M be a met-
ric space, (L2, A, P) be a probability space, let
Zn. 2 — M, n = 1,2,..., be functions and let
Z be a function from <2 to a separable subspace of
M which is Borel measurable. It is said that Z;, con-
verge in law to Z, written as Z,, = Z in M, Iif for
each h € C,(M),

*
E*h(Zy) = /Q hoZy dP — /Q hoZ dP = Eh(Z),

where E*T .= inf{EU } is the upper integral.

(So the laws need not exist to converge in law,
except for the limit function).

Theorem: If a metric space M is separable and
Zn. €2 — M are r.v's then convergence 2, = 4
In M is equivalent to the usual weak convergence of
laws L(Z,) — L(Z).



We are interested in vy, = v in Lo (Fq) With ¢ < 2,
here

1 & 1 ol
()= 7= 3 XY U = [ faw

and f € Fqg={f € WglO,1]: [[fll{g < 1}

The first question is when does the limit law exists?
Let Q be a probability on [0, 1]. Foreach f,g € F C

L:Q([O, 1],@), let
p2.0(f,9) = ( /[ [ — g]2dQ) /2.

0,1]
Then p5 g is the pseudometric on F. If A is the Le-
besgue measure on [0, 1], then let p> 1= p5 . Let
UC(F) be the set of functions h: F — R, which
are uniformly continuous w.r.t. p>. Then UC(F) is
the separable subspace of £ (F) with || - || £.

Dudley (1973): Let F C L»([0, 1], A\). There exists
a version of v = {v(f): f € F} such, thatv: Q —
UC(F), provided

1
/O \/IogN(e,]:,pQ)de < 00,

where N (e, F, p>) is the minimal number of balls of
radius ¢ needed to cover F.
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For each n, let Z,,1,..., Znn be independent sto-
chastic processes indexed by a class F and defined
on a probability space (2., An, P,). Next are con-
ditions for

T = znj (Zpi — EZp)) = 7 inboo(F). (1)
1=1

The following is from the book of Van der Vaart and
Wellner (1996).

Theorem: For each n, let {Z,,;: 1 <1 < n} be in-
dependent stochastic processes indexed by a totally
bounded semimetric space (F, p). Assume that the
sums Z, are ,properly measurable" and that

n
Am > BN Zuill F1q) z,) z>my = 00 Y0 >0,

1=1

n
lim  sup Y E[Zy(f)—Zni(9)]° =0, V10,

5n
= lim | V10g N (e, F,dn) de = 0, V6 |0,

N n—oo

and the sequence of covariance functions of Z,, —
E Z,, converge pointwise on F x F to the covariance
of Z. Then (1) holds true.
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Let F'r be a function with values

Fr(z) :=sup{|f(x)|: feF}, z=e€]l0,1].

If F'r IS measurable, then it is called the envelope
function of F.

Theorem: Let X1, X5,... be 1i.d. real r.v's with
EX; =0and EX? =02 < o0. Letl1 < g <2
and F C W,[0,1] be “image admissible Suslin",
| F7|lsup < oo and

1
sup /log N (e, F, ) de < o0, (2)
/o QEQ\/ (e, Fyp2,0

where QO is the set of all probability measures on
[0, 1]. Then

Dudley: Let Fy = {f € Wy[O, 1]: [|f]l{y < 1} with
1 < g < 2. Then Fy is “image admissible Sus-
lin", the envelope function Fr, =1 and (2) holds for
F = Fyg.
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Application of the result.

Consider the model of nonlinear regression:

yZ:Bf(Z/n)_I_G?J ?::1,...,71,,

where ¢; are i.i.d. r.v's Ee; = 0 and Ee2 = 1. The
function f: [0, 1] — R is known, while the coeffici-
ent 3 is estimated by 3, obtained by least square
method. Then r.v's

are called residuals. Let Sp(t) := €1 + ... + €
n=12,...,and ¢t € [0, 1].

Teorema: Letp > 2and ¢ > 1 be such that 1/p +
1/q > 1andlet f € W,[0, 1] be continuous. Then

~1/23 L -
n Sn:>W—g/O FdW  inWy[0, 1],

where g(t) := [§ f(s)dsand f := /| fllL,
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For another application consider a problem of esti-
mating a change in the mean

i € (ijk_ln, T¥n],

Xpj = Apy g + €, {

7 =1,...,m,
where 0 = 75 < 77 < -+ < 7, = 1, ¢; are i.i.d.
rv’s Ee; = 0, Ee? = 1 and a1, . . ., anm are real
numbers. Assume that m and 7{,..., 7. _; are not

known. We would like to separate the null hypothe-
SIS

|
=

Hog: m
from its alternative
Hy: 1<m<n.
For this aim we consider the functional

m
Tp,n = max{ Z |Yn,k] o Yn,k‘jlp} )

7=1
here the maximum is taken over 0 = kg < --- <
km =n,1<m<mn,p>0,and

k k‘ n
Ynk = Z Xni — — Z Xni-
i=1 =1
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To verify the null hypothesis we can use the fact

Theorem: Let X,,; = an + ¢, foreach:=1,...,n
andn € N (i.,e. m = 1, no change). If p > 2, then

L(n"PPThp) — L(vp(B)),
asn — oo; here B(t) = W (t)—-tW (1), t € [0, 1].
To verify the alternative let 0 = kg < k1 < -+ <

m =mn,1<m<n Ay = (kj — kj—1)/n,
j=0,1,...,m, and

m m 1/p
Ay i=n (Z (ATp)Plan; — ) AT;';lan”p) :
=1 =1

Theorem: Let n=1/2A,, — oo and p > 2. Then for
eachO < M <

lim P({n"P/?Tp,, < M}) = 0.

n—oo
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