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For a function f : [0,1] → R and a number 0 < p <

∞, the p-variation of f is

vp(f) := sup





m∑

i=1

|f(tj)− f(tj−1)|p


 ≤ +∞,

where the supremum is taken over all partitions 0 =

t0 < t1 < · · · < tm = 1, m = 1,2, . . ., of the
interval [0,1].

If vp(f) < +∞ then we say that f has finite p-
variation and Wp[0,1] is the set of all such func-
tions. This set is a Banach space with the norm

‖f‖[p] := ‖f‖sup + vp(f)1/p.

For a comparison with the α-Hölder, α ∈ (0,1], pro-
perty of f , if p := 1/α, then

m∑

i=1

|f(tj)− f(tj−1)|p ≤ Cp
m∑

j=1

(tj − tj−1) = Cp

and so vp(f) ≤ Cp < +∞. But note that a finite p-
variation property can have discontinuous functions,
such as sample functions of stable processes.
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Let X1, X2, . . . be real random variables. For each
n = 1,2, . . ., let Sn be the n-th partial sum process

Sn(t) := X1 + · · ·+ Xbtnc, t ∈ [0,1],

Thus for each n = 1,2, . . . and t ∈ [0,1],

Sn(t) =





0, if t ∈ [0,1/n),

X1 + · · ·+ Xk, if t ∈ [kn, k+1
n ),

k ∈ {1, . . . , n− 1},
X1 + · · ·+ Xn, if t = 1.

Then for any p ∈ (0,∞),

vp(Sn) = max





m∑

j=1

|Xkj−1+1 + · · ·+ Xkj
|p



 ,

where the maximum is taken over 0 = k0 < · · · <

km = n and 1 ≤ m ≤ n.

J. Bretagnolle (1972): given p ∈ (0,2) there exists
a finite constant Cp such that




n∑

i=1

E|Xi|p ≤

 Evp(Sn) ≤ Cp

n∑

i=1

E|Xi|p,

provided X1, X2, . . . are independent, E|Xi|p < ∞
and EXi = 0 if p > 1.
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Suppose that X1, X2, . . . are independent identical-
ly distributed real random variables, EX1 = 0 and
EX2

1 = 1. Let Lx := max{1, logx}, x > 0.

J. Qian (1998): v2(Sn) = OP (nLLn) as n → ∞.
Also, OP (nLLn) cannot be replaced by op(nLLn),
if in addition E|X1|2+ε < ∞ for some ε > 0.

Let W be a standard Wiener process on the interval
[0,1]. Due to results of N. Wiener (1923) and P.
Lévy (1940):

vp(W ) < +∞ almost surely iff p > 2,

and v2(W ) = +∞ almost surely.

More precise information can be obtained in terms
of φ-variation, defined as p-variation except that the
power function x 7→ xp, x ≥ 0, is replaced by a
function φ.

S. J. Taylor (1972): vψ1
(W ) < +∞ a. s., where

ψ1(x) := x2/LL(1/x), 0 < x ≤ e−e.

Also, vψ(W ) = +∞ a. s., for any ψ such, that
ψ1(x) = o(ψ(x)) as x ↓ 0.
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Given a sequence X1, X2, . . . of i.i.d. real random
variables having a d.f. F , let Fn be the empirical d.f.
based on X1, . . . , Xn.

R.M. Dudley (1992): Let 2 < p < ∞ and let F be a
uniform d.f. The convergence in law

√
n(Fn − F ) ⇒ B in Wp[0,1],

as n →∞ holds, where B is a Brownian bridge.

Y.-Ch. Huang and R.M. Dudley (2001): For 2 <
p < ∞ there is a finite constant Cp such that if F is
any d.f. on R, then on some probability space there
exist X1, X2, . . . i.i.d. r.v.’s with d.f. F and Brownian
bridges Bn such that for all n,

E‖√n(Fn − F )−Bn◦F‖[p] ≤ Cpn
(2−p)/(2p),

and the order of bound is best possible in general.

J. Qian (1998): Let 1 < p < 2. There exists a finite
constant c such, that a. s.

1 ≤ lim inf
n→∞

‖Fn − F‖[p]
n1/p−1

≤ lim sup
n→∞

‖Fn − F‖[p]
n1/p−1

≤ c.

These are the main facts in the present context
known up till recently.
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R. Norvaiša and A. Račkauskas: Let X1, X2, . . .
be a sequence of independent identically distributed
random variables and let Sn be the n-th partial sum
process. The convergence in law

n−1/2Sn ⇒ σW in Wp[0,1],

as n →∞ holds if and only if EX1 = 0 and σ2 :=
EX2

1 < ∞.

It is interesting to compare this fact with the related
convergence of smoothed partial sum processes wi-
th respect to the α-Hölder norm. Let S̃n be a (ran-
dom) function obtained from Sn by linear interpola-
tion between points

(
k

n
, Sn

(
k

n

))
ir

(
k + 1

n
, Sn

(
k + 1

n

))

k = 0,1, . . . , n− 1.

A. Račkauskas and C. Suquet (2004): Let p > 2.
Convergence in law

n−1/2S̃n ⇒ σW in H0
1/p[0,1],

as n →∞ holds if and only if EX1 = 0 and

lim
t→∞ tPr({|X1| > t1/2−1/p}) = 0.
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Sketch of proof. The proof rests on some results
concerning a problem of representing linear boun-
ded functionals on the Banach space Wq[0,1]. The
following fact (with a different constant) is due to Lo-
ve, E. R. and Young L. C. (1937):

Theorem: Let 1 < q < ∞, 1/p + 1/q = 1, let
L: Wq[0,1] → R be a linear bounded functional
and let F (t) := L(1[0,t]), t ∈ [0,1]. Then

‖F‖[p] ≤ 4 sup {|L(f)|: f ∈ Fq} = 4‖L‖Fq,

where Fq := {f ∈ Wq[0,1]: ‖f‖[q] ≤ 1}.

To use this fact we represent the n-th partial sum
process as follows

n−1/2Sn(t) =
1√
n

n∑

i=1

Xi1I[0,t](i/n) = νn(1I[0,t]),

where for any function f : [0,1] → R

νn(f) :=
1√
n

n∑

i=1

Xif(i/n).

Then we use a theory of stochastic processes in-
dexed by functions.
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For each f ∈ L2([0,1], λ), let

ν(f) :=
∫ 1

0
f dW,

where the integral is defined in the Itô sense. Then
ν is the isonormal Gaussian process in the Hilbert
space L2([0,1], λ). When f ∈ Wq[0,1] and q < 2,
then ν(f) exists as the Riemann-Stieltjes integral
and

V ar(νn(f)) =
σ2

n

n∑

i=1

f2(
i

n
) → σ2

∫ 1

0
f2 dλ =: σ2

f

By Lindeberg’s CLT, L(νn(f)) → N(0, σf) as n →
∞ for each (fixed) f ∈ Wq[0,1].

In fact we need a convergence which is uniform over
a class of functions

Fq = {f ∈ Wq[0,1]: ‖f‖[q] ≤ 1},
which is the unit ball in the Banach space Wq[0,1].
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Convergence in law (basic facts).

Let M be a metric space and let B be a σ-algebra of
its Borel sets. Let (Ω,A, P ) be a probability space.
If a function X: Ω → M is A− B measurable, then
it is called a random variable (r.v.). A law of a r.v. X

is a measure L(X) on B with values

L(X)(B) = P ({ω ∈ Ω: X(ω) ∈ B}), B ∈ B.

A sequence L(Zn) of laws on a metric space con-
verges (weakly) to a law L(Z), if for each h ∈
Cb(M),

Eh(Zn) =
∫

M
h dL(Zn) →

∫

M
h dL(Z) = Eh(Z).

The problem comes from the fact that many interes-
ting functions are not r.v.’s. This is the case when
M is not separable metric space since the Borel σ-
algebra B in such a space is too big to carry a σ-
additive measure.

The Banach space (Wp[0,1], ‖ · ‖[p]), as well as
the Banach space (`∞(F), ‖ ·‖F) are not seprable.
The set of indicator functions {1[0,t]: t ∈ [0,1]} is
not countable and not dense.
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The non-separability problem is solved by using the
following extension of the classical weak convergen-
ce notion.

Hoffmann-Jørgensen (1984): Let M be a met-
ric space, (Ω,A, P ) be a probability space, let
Zn: Ω → M , n = 1,2, . . ., be functions and let
Z be a function from Ω to a separable subspace of
M which is Borel measurable. It is said that Zn con-
verge in law to Z, written as Zn ⇒ Z in M , if for
each h ∈ Cb(M),

E∗h(Zn) =
∫ ∗
Ω

h◦Zn dP →
∫

Ω
h◦Z dP = Eh(Z),

where E∗T := inf{EU} is the upper integral.

(So the laws need not exist to converge in law,
except for the limit function).

Theorem: If a metric space M is separable and
Zn: Ω → M are r.v.’s then convergence Zn ⇒ Z

in M is equivalent to the usual weak convergence of
laws L(Zn) → L(Z).
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We are interested in νn ⇒ ν in `∞(Fq) with q < 2,
here

νn(f) =
1√
n

n∑

i=1

Xif(
i

n
), ν(f) =

∫ 1

0
f dW

and f ∈ Fq = {f ∈ Wq[0,1]: ‖f‖[q] ≤ 1}.

The first question is when does the limit law exists?
Let Q be a probability on [0,1]. For each f, g ∈ F ⊂
L2([0,1], Q), let

ρ2,Q(f, g) := (
∫

[0,1]
[f − g]2 dQ)1/2.

Then ρ2,Q is the pseudometric on F . If λ is the Le-
besgue measure on [0,1], then let ρ2 := ρ2,λ. Let
UC(F) be the set of functions h: F → R, which
are uniformly continuous w.r.t. ρ2. Then UC(F) is
the separable subspace of `∞(F) with ‖ · ‖F .

Dudley (1973): Let F ⊂ L2([0,1], λ). There exists
a version of ν = {ν(f): f ∈ F} such, that ν: Ω →
UC(F), provided

∫ 1

0

√
logN(ε,F , ρ2) dε < ∞,

where N(ε,F , ρ2) is the minimal number of balls of
radius ε needed to cover F .
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For each n, let Zn1, . . . , Znn be independent sto-
chastic processes indexed by a class F and defined
on a probability space (Ωn,An, Pn). Next are con-
ditions for

Zn :=
n∑

i=1

(Zni − EZni) ⇒ Z in `∞(F). (1)

The following is from the book of Van der Vaart and
Wellner (1996).

Theorem: For each n, let {Zni: 1 ≤ i ≤ n} be in-
dependent stochastic processes indexed by a totally
bounded semimetric space (F , ρ). Assume that the
sums Zn are „properly measurable" and that

lim
n→∞

n∑

i=1

E∗‖Zni‖2F1{‖Zni‖F>η} = 0, ∀η > 0,

lim
n→∞ sup

ρ(f,g)<δn

n∑

i=1

E[Zni(f)−Zni(g)]
2 = 0, ∀δn ↓ 0,

P ∗n− lim
n→∞

∫ δn

0

√
logN(ε,F , dn) dε = 0, ∀δn ↓ 0,

and the sequence of covariance functions of Zn −
EZn converge pointwise on F×F to the covariance
of Z. Then (1) holds true.
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Let FF be a function with values

FF(x) := sup{|f(x)|: f ∈ F}, x ∈ [0,1].

If FF is measurable, then it is called the envelope
function of F .

Theorem: Let X1, X2, . . . be i.i.d. real r.v.’s with
EX1 = 0 and EX2

1 = σ2 < ∞. Let 1 ≤ q < 2

and F ⊂ Wq[0,1] be “image admissible Suslin",
‖FF‖sup < ∞ and

∫ 1

0
sup
Q∈Q

√
logN(ε,F , ρ2,Q) dε < ∞, (2)

where Q is the set of all probability measures on
[0,1]. Then

νn ⇒ ν in `∞(F).

Dudley : Let Fq = {f ∈ Wq[0,1]: ‖f‖[q] ≤ 1} with
1 ≤ q < 2. Then Fq is “image admissible Sus-
lin", the envelope function FFq ≡ 1 and (2) holds for
F = Fq.
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Application of the result.

Consider the model of nonlinear regression:

yi = βf(i/n) + εi, i = 1, . . . , n,

where εi are i.i.d. r.v.’s Eε1 = 0 and Eε21 = 1. The
function f : [0,1] → R is known, while the coeffici-
ent β is estimated by β̂n obtained by least square
method. Then r.v.’s

ε̂i := yi − β̂nf(i/n), i = 1, . . . , n.

are called residuals. Let Ŝn(t) := ε̂1 + . . . + ε̂btnc,
n = 1,2, . . ., and t ∈ [0,1].

Teorema: Let p > 2 and q ≥ 1 be such that 1/p +

1/q > 1 and let f ∈ Wq[0,1] be continuous. Then

n−1/2Ŝn ⇒ W − g
∫ 1

0
f̃ dW in Wp[0,1],

where g(t) :=
∫ t
0 f̃(s) ds and f̃ := f/‖f‖L2

.

13



For another application consider a problem of esti-
mating a change in the mean

Xni := anj + εi,

{
i ∈ (τ∗j−1n, τ∗j n],

j = 1, . . . , m,

where 0 = τ∗0 < τ∗1 < · · · < τ∗m = 1, εi are i.i.d.
r.v.’s Eε1 = 0, Eε21 = 1 and an1, . . . , anm are real
numbers. Assume that m and τ∗1, . . . , τ∗m−1 are not
known. We would like to separate the null hypothe-
sis

H0 : m = 1

from its alternative

HA : 1 < m ≤ n.

For this aim we consider the functional

Tp,n := max





m∑

j=1

|Yn,kj
− Yn,kj−1

|p


 ,

here the maximum is taken over 0 = k0 < · · · <

km = n, 1 ≤ m ≤ n, p > 0, and

Yn,k :=
k∑

i=1

Xni −
k

n

n∑

i=1

Xni.
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To verify the null hypothesis we can use the fact

Theorem: Let Xni = an + εi for each i = 1, . . . , n

and n ∈ N (i.e. m = 1, no change). If p > 2, then

L(n−p/2Tn,p) → L(vp(B)),

as n →∞; here B(t) = W (t)− tW (1), t ∈ [0,1].

To verify the alternative let 0 = k0 < k1 < · · · <

km = n, 1 ≤ m ≤ n, ∆τ∗nj := (kj − kj−1)/n,
j = 0,1, . . . , m, and

∆n := n




m∑

j=1

(∆τ∗nj)
p|anj −

m∑

l=1

∆τ∗nlanl|p



1/p

.

Theorem: Let n−1/2∆n → ∞ and p > 2. Then for
each 0 < M < ∞

lim
n→∞P ({n−p/2Tp,n < M}) = 0.

15


