Partial sum processes in p-variation norm

Rimas Norvaiša

Abstract of a talk in the Workshop on Ambit processes, non-semimartingales and applications. Sandbjerg, Denmark 2010 January 24 - 28

Let X_1, X_2, \ldots be a sequence of i.i.d. real-valued random variables. For each integer $n \ge 1$, let $S_n(t) := \sum_{i=1}^{\lfloor nt \rfloor} X_i$, $t \in [0,1]$, be the *n*-th partial sum process. Then the partial sum process is the sequence of *n*th partial sum processes $S_n = \{S_n(t): t \in [0,1]\}, n \ge 1$. For a function $f: [0,1] \to \mathbb{R}$ and a number $p \in (0,\infty)$, the *p*-variation of f is

$$v_p(f) := \sup \left\{ \sum_{i=1}^m \left| f(t_i) - f(t_{i-1}) \right|^p : 0 = t_0 < t_1 < \dots < t_m = 1, \ m \in \mathbb{N}_+ \right\}.$$

If $v_p(f) < \infty$ then f has bounded p-variation and the set of all such functions is denoted by $\mathcal{W}_p[0,1]$. For each $f \in \mathcal{W}_p[0,1]$ and $1 \leq p < \infty$, let $||f||_{[p]} :=$ $||f||_{\sup} + v_p(f)^{1/p}$, where $||f||_{\sup} := \sup\{|f(x)|: x \in [0,1]\}$. The set $\mathcal{W}_p[0,1]$ is a Banach space with the norm $|| \cdot ||_{[p]}$. We plan to discuss the following result obtained jointly with A. Račkauskas, as well as its extensions and applications.

Let $2 and let <math>W = \{W(t): t \in [0, 1]\}$ be a Wiener process. The convergence

 $n^{-1/2}S_n \Rightarrow W$ in law in $\mathcal{W}_p[0,1],$

as $n \to \infty$ holds if and only if $EX_1 = 0$ and $EX_1^2 = 1$.