Increment martingales

Jan Pedersen

Joint with Andreas Basse-O'Connor and Svend-Erik Graversen

January 20, 2010

• • • • • • • •

- Some interesting *martingale-like* processes are not local martingales:
 - Lévy processes indexed by $\mathbb R$ (that is, they have stationary independent increments) with centered increments;
 - Diffusions (index set $(0, +\infty)$) on natural scale started at $+\infty$ (i.e. $X_0 := \lim_{s \to 0} X_s = +\infty$) which is an entrance boundary.
- At the same time one would like to define an integral with respect to such processes.
- The general theory of martingales indexed by, say, partially ordered sets, does not seem to give much insight in this case.
- We develop a framework in which the above processes can be analysed.

- $\bullet\,$ Martingales indexed by $\mathbb{R}.$
- Increment martingales:
 - [·] and $\langle \cdot \rangle;$
 - Martingales are increment martingales. Conversely: Increment (local) martingale plus ... implies (local) martingale up to addition of random variables.
- Integration
- Extensions.

$\mathsf{INDEX}\;\mathsf{SET}\colon\mathbb{R}.$

Consider a filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \in \mathbb{R}}, P)$.

- M = (M_t)_{t∈ℝ} is a martingale if it is adapted, integrable and E[M_t|F_s] = M_s for all s < t. In this case: M_{-∞} exists a.s. and (M_t)_{t∈[-∞,∞)} is a martingale.
- M = (M_t)_{t∈ℝ} is a local martingale if there is a localising sequence (τ_n)_{n≥1} such that M^{τn} is a martingale.
 In this case: M_{-∞} exists a.s. and (M_t)_{t∈[-∞,∞)} is a local martingale.

In particular: Lévy processes indexed by $\mathbb R$ cannot be local martingales.

Let $X = (X_t)_{t \in \mathbb{R}}$ be a real-valued process. For $s \in \mathbb{R}$ let

$${}^{s}X_{t} := X_{t} - X_{t \wedge s} = \begin{cases} 0 & \text{if } t \leq s \\ X_{t} - X_{s} & \text{if } t \geq s. \end{cases}$$

(The increment over the interval (s, t].) Set furthermore ${}^{s}X = ({}^{s}X_{t})_{t \in \mathbb{R}}$. X = (X_t)_{t∈ℝ} is an *increment martingale* if for all s, ^sX ∈ M. That is, ^sX is an adapted process and

$$E[{}^{s}X_{t}|\mathcal{F}_{s}] = 0$$
 for all $s < t$.

X = (X_t)_{t∈ℝ} is an *increment local martingale* if for all s
 ^sX ∈ LM.
 In this case the localising sequence may depend on s.

Note: Increment local martingales are in general not adapted or integrable. In fact:

M increment local martingale and *Z* random variable implies *M* + *Z* is increment local martingale.

Increment martingales - remarks and examples

- (Local) martingale implies increment (local) martingale.
- A Lévy process indexed by ℝ with centered increments is an increment martingale with respect to the filtration generated by increments. That is,

$$\mathcal{F}_t = \sigma({}^{s}X_u : s \le u \le t).$$

• A diffusion on natural scale with ∞ as entrance boundary is an increment local martingale. (Stretch index set $(0,\infty)$ into $(-\infty,\infty)$.)

□□ ▶ < □ ▶ < □ ▶</p>

- Increment martingale plus adapted plus integrable equals martingale.
- Assume *M* is in *IM* and (^sM₀)_{s<0} is UI. Then: M_{-∞} exists a.s. and M - M_{-∞} is in *M*.
- Assume *M* is in \mathcal{IM}^2 and $\sup_{s:s \le 0} E[({}^{s}M_0)^2] < \infty$. Then: $M_{-\infty}$ exists a.s. and $M - M_{-\infty}$ is in \mathcal{M}^2 .

Existence of $M_{-\infty}$ alone does not imply that $M - M_{-\infty}$ is in \mathcal{M} .

Example

Assume: $\tau_1 \sim \tau_2 \sim f \sim F$ (independent) where $F(t) \in (0,1)$ for all t.

Let $N_t^i = 1_{[\tau_i,\infty)}(t)$, $N_t = (N_t^1, N_t^2)$ and let the filtration be generated by N.

Let

$$X_t = (\tau_1 \wedge \tau_2 \wedge t)(N^1_{\tau_1 \wedge \tau_2 \wedge t} - N^2_{\tau_1 \wedge \tau_2 \wedge t}) = \int_{-\infty}^{\tau_1 \wedge \tau_2 \wedge t} s \operatorname{d}(N^1 - N^2)_s.$$

Note that X is an adapted step function and $X_{-\infty} = 0$. If

$$\int_{-\infty}^{t} \frac{uf(u)}{1 - F(u)} \, \mathrm{d}u = -\infty \quad \text{for all } t$$

then X is in \mathcal{IM} but not in \mathcal{LM} .

Assume $M \in \mathcal{ILM}^2$. Then the following are equivalent

- (1) $M_{-\infty}$ exists a.s. and $M M_{-\infty}$ is in \mathcal{LM}^2 .
- (2) There exists a predictable increasing process $\langle M \rangle$ with $\langle M \rangle_{-\infty} = 0$ such that for all *s*, ${}^{s}\!\langle M \rangle$ is the predictable quadratic variation for ${}^{s}\!M$, i.e. ${}^{s}\!\langle M \rangle = \langle {}^{s}\!M \rangle$.

Assume $M \in \mathcal{ILM}^2$. Then the following are equivalent

- (1) $M_{-\infty}$ exists a.s. and $M M_{-\infty}$ is in \mathcal{LM}^2 .
- (2) There exists a predictable increasing process ⟨M⟩ with ⟨M⟩_{-∞} = 0 such that for all s, ^s⟨M⟩ is the predictable quadratic variation for ^sM, i.e. ^s⟨M⟩ = ⟨^sM⟩.

Let $M \in \mathcal{ILM}^2$. There exists a generalised predictable quadratic variation for ^sM, to be denoted $\langle M \rangle^{g}$. This process is unique up to addition of random variables and satisfies ${}^{s}\langle M \rangle^{g} = \langle {}^{s}M \rangle$ for all s. Thus, (2) can be rephrased as: $\lim_{s \to -\infty} \langle M \rangle^{g}_{s}$ is finite.

Assume $M \in ILM$ is continuous. If $M_{-\infty}$ exists a.s., then $M - M_{-\infty}$ is in LM.

Note: It its not enough that $M_{-\infty}$ exists in probability.

Assume $M \in ILM$. The existence of a quadratic variation [M] does not imply that $M_{-\infty}$ exists a.s., and $M - M_{-\infty}$ is in LM. See previous example. [M] is an increasing process with $[M]_{-\infty} = 0$ such that for all s ${}^{s}[M] = [{}^{s}M]$.

But: [M] exists iff there is a continuous local martingale component of M and $\sum_{s<0} (\Delta M_s)^2 < \infty$. The first condition is that M can be decomposed as

$$M = M^c + M^d$$

where M^c is a continuous local martingale and for all s, ${}^{s}M^d$ is a purely discontinuous local martingale.

Moreover: [M] exists and $[M]^{1/2}$ locally integrable iff $M_{-\infty}$ exists a.s. and $M - M_{-\infty}$ is in \mathcal{LM} .

Let $M \in \mathcal{ILM}$. The integral $(\int_s^t \phi_u \, \mathrm{d}M_u)_{t \ge s}$ is then well-defined. Fix t. If $\lim_{s \to -\infty} \int_s^t \phi_u \, \mathrm{d}M_u$ exists a.s.: Improper integral. (Existence of improper integrals does not depend on t).

- Improper integrals are in general not local martingales up to addition of random variables except when *M* is continuous.
- Necessary and sufficient conditions for existence of improper integrals?

Let $M \in \mathcal{ILM}$. One can define a proper integral $\phi \bullet M_t = \int_{-\infty}^t \phi_u \, \mathrm{d}M_u$.

- This integral is a local martingale and $\phi \bullet M_{-\infty} = 0$
- Existence of $\phi \bullet M$ implies existence of the improper integral.
- When *M* is continuous the proper integral exists iff the improper integral exists. In fact, these integrals exist iff

$$\int_{-\infty}^t \phi_u^2 \,\mathrm{d} \langle M \rangle_u^{\mathrm{g}} < \infty.$$

Keywords:

- Increment semimartingales
- Vector-valued random measures
- Integration with respect to Vector-valued random measures/ISM.