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Introduction

Consider a sequence of Gaussian random variables

{Xn,n > 1} with E(X) = 0, E(X?) = 1, E(X;X) = p(j, k),

J,k > 1. Let H(x) be a real value function such that,

E(H(X1)) = 0 and E(H(X7))? < co. Then, a natural problem, is
to find suitable conditions ensuring that

1 n
Foi=—> H(X) — N(O,1).
i a2 HX) = MO.)



Introduction

So far, the main way of solving this problem was to check if the
moments of F, converged to the moments of the standard
normal distribution, that is, to see if

. oy (p— 1N if pis even
Am E(Fn) =, { 0if pis odd.



Introduction

To prove this one expanded H(x) in the form
H(x) =) cH(x),
j=1
where H; is the jth Hermite polynomial
i
Hix) = (12 2 (e772), =1,

dx/

and by using the diagram formula to calculate the asymptotic
moments of Fj.
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Diagram formula
Consider a set of vertices {(i,j),1 <i<p,1 <j</}anda
diagram G with the following properties

1. Edges may pass only if the first coordinates of the vertices
are different.

2. Each vertex has one edge.

Let =T (h,...,In) denote the set of all these diagrams and for
G €T by A(G) the set of edges G. Now fora w € G,

w = ((i1,1), (i, Jo)), where iy < i», define the functions

d1(W) = i1,d2(W) = lp. Then

E(MP_ HL (X)) = D Nueaayp(di(w), do(w)).
Gerl

As a particular case we have
E(Hn(X1)Hm(X2)) = 0nmm!p™(1,2),

where §,m is the Kronecker symbol.



Introduction

Since the work of Nualart and Peccatti in (2005) we know that it
is sufficient to check the behaviour of the second and the fourth
order moments of (Fj), even we can get equivalent conditions
for the convergence of the fourth order moments that are easier
to check. Moreover the random variables F, can be measurable
with respect to a Gaussian process, not necessarily discrete.
The theoretical framework to obtain these results is the so
called The Malliavin Calculus.



Basic Malliavin Calculus

Isonormal processes

Consider a complete probability space (2, F, P) and a
Gaussian subspace H; of L?(Q, F, P) whose elements are
zero-mean Gaussian random variables. Let § be a separable
Hilbert space with scalar product denoted by (-, )¢ and norm
[| - |- We will assume that there is an isometry

W:9 — Hy
h — W(h)

in the sense that
E[W(h)W(h2)] = (h1, ho) .

It is easy to see that this map has to be linear. W is called an
isonormal Gaussian process.



Basic Malliavin Calculus

Isonormal processes

Example

Let {e;,i > 1} be the canonical basis of RY with a scalar
product (e;, e;) = p(i,j) consider $ =span{e;,i > 1}. Then
{W(e;),i > 1} will be a sequence of centered Gaussian
random variables with covariance function p(-, -).
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Isonormal processes

Example

Let {e;,i > 1} be the canonical basis of RY with a scalar
product (e;, e;) = p(i,j) consider $ =span{e;,i > 1}. Then
{W(e;),i > 1} will be a sequence of centered Gaussian
random variables with covariance function p(-, -).

Example

Take (110,4(-); 1[0,¢/(-)) = p(s, 1), and

H = span{1[o,,](-),0 <t< T} then (Wf = W(1[0J]))IS a
centered Gaussian process with covariance function p(-, -).

Example

If, in the previous example, we take p(s,t) = s At then

§ = L2([0, T], dx) and (W; := W(1}p4)) is a Brownian motion,
moreover W(h) = fOT hsdWs, the Wiener integral of the function
h with respect to the Brownian motion (W;) .
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Isonormal processes

Example

9 = L?(A, A, 1) where (A, A) is a measurable space and y is a
o-finite measure without atoms (i.e. for any A € A such that
u(A) > 0 there is B € A such that 0 < u(B) < p(A)).

The process {W(A) .= W(14),A € A, u(A) < o} is called a
Gaussian white noise with intensity 1. on the space (A, A ).

We can define a Wiener integral of a function h € $) with respect
to the process (W(A)) and we have that W(h) = [, hsdWs. We
can also construct, in a standard way, the multiple Wiener
integral for functions in LZ(A” A" ) and it can be seen that, if
he 9, |lhlls=1, Hi(W = [0 h( h(t,)dWs,...dW,.
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Wiener chaos

For any m > 2, we denote by H,, the closed subspace of
L?(Q, F, P) generated by the random variables Hy,(W(h)),
where h € 9, ||h||s = 1. Itis called the m-th Wiener chaos.
Then,

Theorem
Every random variable Y € L?(Q,G, P), where G is the o-field
generated by W, can be uniquely expanded as

Y=E(Y)+> Y
n=1

where Y, € Hp.
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Wiener chaos

Proof. If Y € L2(Q, G, P) is orthogonal to every H,(W(h)),

he %, ||hl|s = 1 then Y is orthogonal to eXi-1 AiW(e),

Ai € R,i>1and (e;);>1 an orthonormal basis of $. From here
E(Y|W(eq),...W(en)) =0,a.s and since E(Y|W(ey),...W(en))
converges a.s. to Y,then Y =0,a.s.. m



Basic Malliavin Calculus

Wiener chaos

Suppose that $) is infinite-dimensional and let {e;,i > 1} be an
orthonormal basis of £. Denote by A the set of all sequences
a=(ay,an,...), a € N, such that all the terms, except a finite
number of them, vanish. For a € A we set a! = N, g;! and

la| = > ;24 a;. For any multiindex a € A we define

]
Val

The family of random variables {®,, a € A} is an orthonormal
system. In fact

b,y = i21Ha (W(ey)).

E [N724 Ha (W(e)N2 4 Hp (W (e)))] = daval ,

Moreover, {®4] a € A, |a] = m} is a complete orthonormal
systemin Hp, .



Basic Malliavin Calculus

Wiener chaos

Let a € A with |a| = m and denote ®°, e’ = e®2. Where ® is
the tensor product. The mapping

Im: 9™ — Hp
e¥a — T2 Ha(W(e)),

between the symmetric tensor product H©, equipped with the
norm \ﬁ ||l om» @and the m-th chaos Hp, is a linear isometry.
Here ® denotes the symmetrization of the tensor product ®
and [y is the identity in R.
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Contractions in H©"

Foranyh=h @ ---@hpand g =91 ® --- @ gm €H°™, we
define the p-th contraction of h and g, denoted by h®,, g, as
the element of $®2(m-P) given by

hopg=(h1,91)5 " (hp,Gp)shps1 @ DM@ gpy1 @+ @ g

This definition can be extended by linearity to any element of
H®M. h @, g does not necessarily belong to $°(™P), even if h
and g belong to H®™. We denote by hépg the symmetrization
of h®p g.



Basic Malliavin Calculus

Multiplication Formula

Proposition
Forany h € $§°P and g € $°9, we have

W(Al(e) =3 1 (P)(7) braartting)

r=0



Basic Malliavin Calculus

Multiplication Formula

Proof. First, note that
/1 (e,') = W(e,-).

Let a € A with |a| = pand g = 1. Due to linearity of I, it suffices
to consider the case h = e®4, g = ¢;. It holds that

Io(e%2) (&) = Ny Ha (W(e))) W(e)).
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Multiplication Formula

Proof. First, note that
/1 (e,') = W(e,-).

Let a € A with |a| = pand g = 1. Due to linearity of I, it suffices
to consider the case h = e®4, g = ¢;. It holds that

Io(e%2) (&) = Ny Ha (W(e))) W(e)).

Assume that j is an index such that a; = 0. Then
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Multiplication Formula

Proof. First, note that
/1 (e,') = W(e,-).

Let a € A with |a| = pand g = 1. Due to linearity of I, it suffices
to consider the case h = e®4, g = ¢;. It holds that

Io(e52)1(6)) = M7 Hay(W(e)) W(e).
Assume that j is an index such that a; = 0. Then
5‘;9/5"(551 e=0

and



Basic Malliavin Calculus

Multiplication Formula

Proof. First, note that
/1(6,') = W(e,-).

Let a € A with |a| = pand g = 1. Due to linearity of I, it suffices
to consider the case h = e®4, g = ¢;. It holds that

Io(e52)1(6)) = M7 Hay(W(e)) W(e).
Assume that j is an index such that a; = 0. Then
5‘;9/5"(551 e=0

and
N2 Ha (W(e))W(e) = Ipi1(e%3Rey),

so we have that



Basic Malliavin Calculus

Multiplication Formula
Proof (cont.).

o(6%3)h (&) = Ips1(69356)) + plp_1(6%351 6y).
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Multiplication Formula
Proof (cont )-

Assume now that g; # 0.
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Multiplication Formula
Proof (cont )-

Assume now that g; # 0. Then we obtain the |dent|ty

— a5
e¥3R 6 = Bje®a’0)

with &(j) = a; if i # j and &(j) = a; — 1.
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Multiplication Formula
Proof (cont.).

Io(e%3)11(€)) = Ip1(€%336)) + plp_1 (67231 ).
Assume now that a; # 0. Then we obtain the identity

%43, 6 = J o)
p
with a(j) = a; if i # j and &j(j) = a; — 1. Furthermore,since the
Hermite polynomials verify
XHp(X) = Hii1(X) + nHo_1 (x).
we have that
i=1Ha (W(ei))W(e))
= M2y ijHa (W(e)(Ha1(W(e))) + ajHa—1(W(ey)))
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Multiplication Formula
Proof (cont.).

Io(e%3)11(€)) = Ip1(€%336)) + plp_1 (67231 ).
Assume now that a; # 0. Then we obtain the identity

%43, 6 = J o)
p
with a(j) = a; if i # j and &j(j) = a; — 1. Furthermore,since the
Hermite polynomials verify
XHp(X) = Hii1(X) + nHo_1 (x).
we have that
im1Ha,(W(ej))W(e)
= NZq izHa(W(ei)(Ha1(W(e))) + aiHa—1(W(ey)))
= Ip11(69386)) + plp_1 (6931 6y),

Hence, the multiplication formula is true for g = 1. The general
formula follows by induction. =
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A useful relationship

Theorem
Let h € $ with ||h||s = 1. Then for every m > 1 we have

Im(h®™) = Hm(W(h))
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A useful relationship

Theorem
Let h € $ with ||h||s = 1. Then for every m > 1 we have

Im(h®™) = Hm(W(h))

Proof. For m =1 itis clear. then

I (FEDY =y (RE™) 1y (R) — Mg (R2(M=1))
= Hm(W(h)W(h) — mHn_1(W(h))



Basic Malliavin Calculus

A useful relationship

Theorem
Let h € $ with ||h||s = 1. Then for every m > 1 we have

Im(h®™) = Hm(W(h))

Proof. For m =1 itis clear. then

it (WD) = (™) () = Ml (B*(™1)
Hin(W(h)W(h) — mHm_1(W(h))
Hm+1



Basic Malliavin Calculus

Wiener chaos

Theorem
Every random variable Y € L?(Q,G, P), where G is the o-field
generated by W, can be uniquely expanded as

Y =" In(hn),
n=0

where h, € H°".

Proof. It is immediate from the previous chaos decomposition
and the definition of /,. m



Basic Malliavin Calculus

The Malliavin derivative

Let S be the class of smooth random variables

F = f(W(hy),..., W(hp)), fcCz°(R") (f and all its partial
derivatives have polynomial growth), we can define its
differential as

DF = Z Oif( W(h),..., W(hn))h;.

DF is as a random variable with values in $. Then we can built
a closed map
D:D'"2 C2(Q,R) — L[3(Q,9)
F — DF.



Basic Malliavin Calculus

The Malliavin derivative

where D' is the closure of the class of smooth random
variables with respect to the norm

IFll2 = (EQFP) + EQIDFIR)) .

For instance D(Hy(W(h))) = nHp_1(W(h))h,n > 1, (Hp :=1).
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Malliavin derivative. Useful formula

Proposition
Set h ¢ H©", then

E(|IDIn(h)[13) = nn! || All5c,



Proof. It is sufficient to consider h = h", hy € §. Then,
In(h$™) = (|| |G Hn(W(hy /11 1] 5)),



Proof. It is sufficient to consider h = h", hy € §. Then,
In(h$™) = (|| |G Hn(W(hy /11 1] 5)),

Din(h) = nl| 1§~ Ho_q (W (b1 /llh1 1)) 1.



Proof. It is sufficient to consider h = h", hy € §. Then,
In(h$™) = (|| |G Hn(W(hy /11 1] 5)),

Din(h) = nl| 1§~ Ho_q (W (b1 /llh1 1)) 1.

and
IDIn(M)[1 = r?|| |2 Hp—1 (W(h1 /|| h1]]5))>.

Therefore

E(IIDIn(M)I5) = mP[1[13'(n — 1)t = nnt][h]Zen



Basic Malliavin Calculus

Divergence operator

Let u be an element of L?(Q, ) and assume there is an
element §(u) € L?(Q) such that

E((DF, u)s) = E(Fd(u))

for any F € D'2, then we say that u is in the domain of § and
that ¢ is the adjoint operator of D.



Basic Malliavin Calculus

Divergence operator

Let u be an element of L?(Q, ) and assume there is an
element §(u) € L?(Q) such that

E((DF, u)s) = E(Fd(u))

for any F € D'2, then we say that u is in the domain of § and
that ¢ is the adjoint operator of D. For instance

Proposition
Let h be an element of $,



Basic Malliavin Calculus

Divergence operator

Proof. Without loss of generality we can assume that ||h||g = 1
and that F = f(W(h), W(ho), ..., W(hp)) with h; orthogonal to h.
Then

E((DF, h)g

/ 011(x1, W(hp), ., W(hy))——e~ ¥ dixy)
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Divergence operator

Proof. Without loss of generality we can assume that ||h||g = 1
and that F = f(W(h), W(ho), ..., W(hp)) with h; orthogonal to h.
Then

E((DF, hy,
1 1,2
= 01f(xy, W(ho),..., W(h e 2% dx
/1 1 2 (n))m 1)
1 2
= E([ xf(x;, W(hy), ..., W(h e % dx
(/Rm (he). ... W(hn) = :
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Divergence operator

Proof. Without loss of generality we can assume that ||h||g = 1
and that F = f(W(h), W(ho), ..., W(hp)) with h; orthogonal to h.
Then

E((DF, hy,
1 1,2
= 01f(xy, W(ho),..., W(h e 2% dx
/1 1 2 (n))m 1)
1 2
= E([ xf(x;, W(hy), ..., W(h e % dx
(/Rm (he). ... W(hn) = :

= E(FW(h)).
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Divergence operator. Useful formulas

Proposition
If

n
u=Yy Fily
=1

where F; are smooth random variables and h; are elements of
9 then

n

6(u) =D FiW(h) > (DFj. hs
j=1

J=1
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Divergence operator. Useful formulas
Proof. Let T € S,

n n

E(To(w) = Y E(TRW(h)) - ) E(T(DFj hy)s)
j=1 j=1
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Divergence operator. Useful formulas

Proof. Let T € S,

E(To(u)) = zn:E(TFjW
j=1

n

(h)) = > E(T(DF}, b))

= S E(D(TF),h)s) — > E(T(DF}, h)s)
j=1
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Divergence operator. Useful formulas

Proof. Let T € S,

E(Té(u) = ) E(TRW(h)) - E(T(DFj h)s)

j=1 J=1
= S E(D(TF),h)s) — > E(T(DF}, h)s)
j=1 =1

= ) _E(D(TF) - TDF}, h)s)
Jj=1
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Divergence operator. Useful formulas
Proof. Let T € S,

n

E(Té(u) = ) E(TRW(h)) - E(T(DFj h)s)

j=1 J=1
= S E(D(TF),h)s) — > E(T(DF}, h)s)
=1 =1

= 2 E(D(TF) - TR h)s)

= ZE (DT, h))g DTZFh
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Divergence operator. Useful formulas
Proof. Let T € S,

n

E(Té(u) = ) E(TRW(h)) - E(T(DFj h)s)

j=1 J=1
= S E(D(TF),h)s) — > E(T(DF}, h)s)
=1 =1

= ZE(<D(TF/‘) — TDFj, b))



Basic Malliavin Calculus

Divergence operator. Useful formulas

Proposition
If
U= Ho1(W(h)h

where h € $, ||h| s = 1 then

d(u) = Hp(W(h)).
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Divergence operator. Useful formulas

Proof.

o(u) = Haa(Wh)W(h) — (DHp+(W(h)), h)s
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Divergence operator. Useful formulas

5(U) = Hoy(W(R)W(h) — (DHp 1 (W(h)), h)s,
= Hos(W(R)W(h) — (n— 1)Ha_a(W(R)(h, h}s
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Divergence operator. Useful formulas

5(u) = Ha s (W(R)W(h) — (DHp_(W(h), h)s,
= Ho s (W(R)W(h) — (0~ 1)Hp_a(W(h))(h, )
—  Ho 1 (W(h)W(h) — (n— 1)Hy_o(W(h)) = Ha(W(h)).



Basic Malliavin Calculus

Useful formulas

Corollary

Let F € Hp then
dDF = nF.
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Useful formulas

Corollary

Let F € H, then
0DF = nF.

Proof. It is sufficient to consider F of the form
F = Hy(W(h)),he 5, HhHch = 1. Then

5DF = 5(nHn_1(W(h))h) = nHa(W(h)) = nF.
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Useful formulas

Lemma
Consider two random variables F = I,(f), G = In(g), where
n,m>1. Then

) _n/\m (n!m!)Q
E((DF,DG)2) = ; (7= )m — i 1)

)2 H férgH;@(,Hm,Q,) .
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Useful formulas

Proof. It is sufficient to consider f = e®a and g= é—‘gb, then

Dln(f) = Za,-ln_1(e®a’(f))ej,
j=1

Dlm(g) = Zbklm—1(e®b/(k))ek»
k=1

and
<Dln(f)7 Dlm(g»fo

= Z ax by In—1 (e®a/(/))lm_1 (e®b/(k))
k=1
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Useful formulas
Proof. It is sufficient to consider f = e®2 and g = e®?, then

Dln(f) = Za,-ln_1(e®a’(f))ej,
j=1

Dlm(g) = Zbklm—1(e®b/(k))ekv
k=1

and
<Dln(f)7 Dlm(g»fo

= Z ax by In—1 (e®a/(/))lm_1 (e®b/(k))
k=1

e’} mAn—1 n—1 m—1
= > abk Y T ( p ) ( p > hinoo(€57 )G, 80 (K).
k=1 r=0
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Useful formulas

Proof (cont.). Hence,

(DIn(f), Dlm(9)) 5

_ mffn(”f )(mr—1

r=0

> /m+n—2—2r(z ax by e®? (K@, e®b' (k)
k=1
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Useful formulas

Proof (cont.). Hence,
(DIn(f), DIm(9)) 5

mAn—1 n—1 m—1 o —_— ——
D YN G | (Ll VANV SEV e
r=0

r
k=1

mAn—1 n—1 m—1 o —
nm z; rl ( . ) ( . )lm+,,22,(e®a®,+1e®b).
r=
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Useful formulas

Proof (cont.). Hence,

<Dln(f)7 Dlm(g»ﬁ

mAn—1 n—1 m—1 o —_—
= > ( r ) ( r > Imin-2-2r(>_ axbke® 5,65t (k)
r=0

k=1
mAn—1 n—1 m— 1 — —
nm Z r! ( , ) ( , ) Imin—2_2r(€%3®,, 1€%P).
r=0
Finally

E ({Dln(f), Dlm(g)) 5 )

mAi1(rI ( - )( >He®a®+1e®b‘

S

~g:)@(n-ﬁ-m 2-2r)



CLT. Random variables in a fixed chaos

Theorem
Fix n > 2. Consider a sequence {Fy = In(fs),k > 1} such that

E(FZ) — o° (1)

k—oo
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The following statements are equivalent:

(i) Fr ki N(0, o2).
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Theorem
Fix n > 2. Consider a sequence {Fy = In(fs),k > 1} such that
E(F?) 7 02 (1)

The following statements are equivalent:
(i) Fx ki N(0, 52).
(i) E(F#) - 30*.

(ii) e @r fell oz — O, forallt <r<n—1.



CLT. Random variables in a fixed chaos

Theorem
Fix n > 2. Consider a sequence {Fy = In(fs),k > 1} such that
E(F?) 7 02 (1)

The following statements are equivalent:
(i) Fx ki N(0, 52).
(i) E(F#) - 30*.
(iii) [[fc @r fill go20-n) P 0, forall1<r<n-—1.

: 2 L2(Q) -
(iv) ||DFk|\ﬁ P noe.
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Proof. To simplify we take o> = 1. We shall prove the following
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(iv) = (i) = (ii) = (iii) = (iv).
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L?(Q) by condition (1).



CLT. Random variables in a fixed chaos

Proof. To simplify we take o> = 1. We shall prove the following
implications

(iv) = (i) = (ii) = (iii) = (iv).

(iv) = (i). First the sequence (F) is tight since it is bounded in
L?(Q) by condition (1).Second, assume that Fx converges to G.
Again by (1), G € L?(Q). Then its characteristic function

o(t) = E(e"C) is differentiable and ¢'(t) = iE(Ge"C). For every
k > 1, define ¢, (t) = E(e"*), then ¢ (t) = iE(Fxe™). Clearly,
Fie converges in law to Ge'® and the boundedness in
L2(R), implies convergence of the first order moments.



CLT. Random variables in a fixed chaos

Proof, (iv) = (i)(cont.) . Then, ¢ (t) — ¢'(t).



CLT. Random variables in a fixed chaos

Proof, (iv) = (i)(cont.) . Then, ¢} (t) — ¢'(t). Moreover,

Glt) = IE(Fke"™) = ZE(3D(Fi)e"™)



CLT. Random variables in a fixed chaos
Proof, (iv) = (i)(cont.) . Then, ¢} (t) — ¢'(t). Moreover,
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CLT. Random variables in a fixed chaos

Proof, (iv) = (i)(cont.) . Then, ¢} (t) — ¢'(t). Moreover,

o (1) = IE(Fxe™) = —E(6D(Fy)e")

i
n
= —%E(eitFk(DFk, DFy) s)

t .
= ——E(e" || DF3) — —to(t),



CLT. Random variables in a fixed chaos

Proof, (iv) = (i)(cont.) . Then, ¢} (t) — ¢'(t). Moreover,

o (1) = IE(Fxe™) = —E(6D(Fy)e")

I
n
— _%E(e”FwDFk,DFM)
t .
= —EE(e”Fk IIDFkH%) — —tp(t),
in fact, by (iv)

E(eitFk HDFKHZ,?)) _ HQO(t)‘ < E(‘ HDFKH% — n’)+n ‘E(eit/'—k) _ Qﬁ(t) .



CLT. Random variables in a fixed chaos

Proof, (iv) = (i)(cont.) . Then, ¢} (t) — ¢'(t). Moreover,

o (1) = IE(Fxe™) = —E(6D(Fy)e")

I
n
- _%E(e"tFk(DFk, DFi) )
t .
=~ E(&" | DFi) — —te(t),
in fact, by (iv)
E(eitFk HDFKH%) _ ngo(t)‘ < E(‘HDFKH% — n’)+n ‘E(eif/'—k) _ Sp(t) .

This implies that ¢(t) satisfies the differential equation

(1) = —to(t),0(0) = 1.



CLT. Random variables in a fixed chaos

Proof. (i) = (ii). Itis well known that, forany 1 < p < g <
the norms ||-[|,, ||-||; are equivalent in any Wiener chaos Hp,
then convergence in law and convergence of the second order
moments implies convergence of the moments of any order.



CLT. Random variables in a fixed chaos
Proof. (ii) = (iii).By using the product formula

n 2
r=0

n—1

2
~ n -
— mH&H24—&n(&®&)%-§:f!<ir > bn—r) (fc@rfk).

r=1

Then



CLT. Random variables in a fixed chaos
Proof. (ii) = (iii).By using the product formula

n 2
r=0

n—1

2
~ n ~
— A+ o (h38) + 31 () o Bk

r=1

Then
E(In(f)*) = (n1)? ||| |*

n—1 4
@MY [ Bt [§ 000 + Y (1) ( ? ) @0 — !t 5 o0 -

r=1

also we have that



CLT. Random variables in a fixed chaos
Proof. (ii) = (iii).By using the product formula

n 2
r=0

n—1

2
~ n ~
— A+ o (h38) + 31 () o Bk

r=1

Then
E(In(f)*) = (n1)? ||| |*

n—1 4
@MY [ Bt [§ 000 + Y (1) ( ? ) @0 — !t 5 o0 -

r=1

also we have that

||f ] |3 02n = f @ i @2n fDfy.



CLT. Random variables in a fixed chaos

Proof. (ii) = (iii)(cont.). Therefore, || f&fx is the sum of

2
Hﬁ@yzn

E )) terms of the form (2n)'ka ®afx||> with a= 0,1, .., n. And for
a=0,n

||fc ®a ka%@Z(nfa) = ka|’4-
Consequently
E(In(fi)*) = 3(n)? [|]|* + R,

and, by the hypothesis (ii) Rx — 0, equivalently
| fc ®r ka%@Z(n—r) —-0,1<r<n-1.



CLT. Random variables in a fixed chaos

Proof. (iii) = (iv). We know that £(||Din(h)[|3) = nn! ||h||3,,
then

E((|IDFK|[5 — n)?) = E(|DFi||§) — 220! || |30 + P,

therefore it suffices to prove that (iii) implies that
E(HDFka%) — n?. But, by the previous Lemma we have that

n—1
E(IDRS) = Y (nt)*

; 2 5@ el geann+P (M) 1fell e
= (=P (r= 1)

so, by (iii), E(||DFK|\;;) — ..



CLT. Random variables in a fixed chaos

Example
Let (B;)>0 be a Brownian motion and $ = L2([0, 1], dx). Then

1
Fi == ﬁ(l/ B?t‘/k—zdt—1> . N(©.2).
0 —00



CLT. Random variables in a fixed chaos

Example
Let (B;)>0 be a Brownian motion and $ = L2([0, 1], dx). Then

1
Fi ;:\/RC(/ B?t‘/k—zdt—1> — N(0,2).
0

k—o0

It is easy to see that

f
Fk—k

1 1
k1/0 /O ((s v 1)/%" 1) dBsaB,
— b(R)



CLT. Random variables in a fixed chaos

Example
Let (B;)>0 be a Brownian motion and $ = L2([0, 1], dx). Then

1
Fi ;:\/RC(/ B?t‘/k—zdt—1> — N(0,2).
0

k—o0

It is easy to see that

f
Fk—k

1 1
k1/0 /O ((s v 1)/%" 1) dBsaB,
— b(R)

where

vk 1/k—1 o2



CLT. Random variables in a fixed chaos
Example (cont.) We have that

o2k 1 1 B
2|fk||§3®2—(k_1)2/0 A ((S\/t)1/k ! —1)d3dt
2k 1

4k (ko 1Y
T k=12 \2 k117 2) k"

E(F?)




CLT. Random variables in a fixed chaos
Example (cont.) We have that

o2k 1 1 B
2|fk||%®2_(k—1)2/0 A ((S\/t)1/k ! —1)d3dt
2k 1

4k (ko 1Y L
T k=12 \2 k117 2) k"

Then it is enough to see that

E(F?)

||fk ®1 fk||?~j®2 k—_>>oo 0.



CLT. Random variables in a fixed chaos
Example (cont.) We have that

o2k 1 1 B
2|fk||323®2—(k_1)2/0 A ((S\/t)1/k 1—1)d3dt
L4k (ko2 1y,

T Ok—12\2 k+1 T 2) ke

Then it is enough to see that

E(F?)

[ @1 fk||?~3®2 P 0.
But

||fk &1 fk||§)®2

L ( [ (1) (s ) ds)Zdtdu
- 0 Jo 0

and [ [ (fo ((sV B)/A=T —1) ((s v u)1/k—1 —1)ds)2dtdu: o(k).



CLT. Random variables in a fixed chaos
Example
Consider a sequence of stationary, normalized, centered
Gaussian random variables (X;);>1. We want to study the
asymptotic behavior of the sequence

k
1
Foim =S Ha(X) |

m > 2. We can take Hy = span{X;,i > 1}, and $ = H4. The
inner product on § is then induced by the covariance function
p(k) = cov(Xj, Xi_x) of the sequence (X;);>1 (note that

p(0) =1).
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p(0) = 1).We obtain the following representation



CLT. Random variables in a fixed chaos
Example
Consider a sequence of stationary, normalized, centered
Gaussian random variables (X;);>1. We want to study the
asymptotic behavior of the sequence

k
1
Foim =S Ha(X) |

m > 2. We can take Hy = span{X;,i > 1}, and $ = H4. The
inner product on § is then induced by the covariance function
p(k) = cov(Xj, Xi_x) of the sequence (X;);>1 (note that

p(0) = 1).We obtain the following representation

Set



CLT. Random variables in a fixed chaos
Example (cont.) Assume that

) " 1p()|™ < oo
J=1
It holds that

ml|| |3 om = o Z(E(X,-Xj))m — %' Z o = j)



CLT. Random variables in a fixed chaos
Example (cont.) Assume that

> i)™ < oo (2
j=1

It holds that

k k

! m! .
m!||hk||%®m =% Z(E(X:X/))m =K Z p" (i — )
ij=1 ij=1

= my; / G my; . 2
= m (1 +2> () (1 k)) — m! (1 +2> p (/)) =: 02
j=1 j=1

Note the identity

k

1 . — _
hicr e = o7 p"(i = X @ X,
ij=1



CLT. Random variables in a fixed chaos

Example (cont.)
This implies

||hk ®r hk\@@m "

S I R O G GGl E?
i".j'=
k—1 L
= :‘f,,-,w:op() o= D (G (= 1)1 =
1 k—1
< X it~ Meldeli~ 1)

i,

0

2 2
(ZP(J p(i—j ) <2 (Zp(/)2> :
=0 ]:O

for any € > 0. So the last term converges to 0 under assumption (2)
for 1 <r < m— 1, and we deduce that Fy ki> N(0, 02).

o

I
OM”



CLT. Random vectors with components in fixed chaos

For d > 2, fix d natural numbers, 1 < ny < ... < ng. Consider a
sequence of random vectors

Fi = (Flla - Flg) = (In1(fll)’ ey /nd(f,?)), 3)

where f/ € $§©". We have a multidimensional version of the
previous theorem,



CLT. Random vectors with components in fixed chaos

Theorem
Let (Fk),~, be a sequence of random vectors of the form (3) such
that, forevery1 <i,j<d

lim E(FLF.) = 6, (4)
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CLT. Random vectors with components in fixed chaos

Theorem

Let (Fk),~, be a sequence of random vectors of the form (3) such
that, forevery1 <i,j<d

lim E(FLF.) = 6, (4)
then the following statements are equivalent

(i) Foreveryi=1,....d, Fj k£> N(0,1).
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CLT. Random vectors with components in fixed chaos

Theorem

Let (Fk),~, be a sequence of random vectors of the form (3) such
that, forevery1 <i,j<d

lim E(FLF.) = 6, (4)

then the following statements are equivalent

(i) Foreveryi=1,....d, Fj k£> N(0,1).

— 00

(i) Forevery i = 1,....d, E((F))") — 3.



CLT. Random vectors with components in fixed chaos

Theorem
Let (Fk),~, be a sequence of random vectors of the form (3) such
that, forevery1 <i,j<d

lim E(FLF.) = 6, (4)
then the following statements are equivalent

(i) Foreveryi=1,....d, Fj k£> N(0,1).
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(i) Forevery i = 1,....d, E((F))") — 3.

(ii) ||fc @r fell gozn-n ,— O, forallt<r<m-11<i<d.



CLT. Random vectors with components in fixed chaos

Theorem
Let (Fk),~, be a sequence of random vectors of the form (3) such
that, forevery1 <i,j<d

lim E(FLF.) = 6, (4)
then the following statements are equivalent

(i) Foreveryi=1,....d, Fj k£> N(0,1).

— 00

(i) Forevery i = 1,....d, E((F))") — 3.

(ii) ||fc @r fell gozn-n ,— O, forallt<r<m-11<i<d.

(iv) Foreveryi=1,..,d,

DFYLE "



CLT. Random vectors with components in fixed chaos

Theorem
Let (Fk),~, be a sequence of random vectors of the form (3) such
that, forevery1 <i,j<d

lim E(FLF.) = 6, (4)
then the following statements are equivalent

(i) Foreveryi=1,....d, Fj k£> N(0,1).

— 00

(i) Forevery i = 1,....d, E((F))") — 3.

(ii) ||fc @r fell gozn-n ,— O, forallt<r<m-11<i<d.

(iv) Foreveryi=1,..,d,

DFYLE "

(v) Fi .5 Na(0, o)



CLT. Random vectors with components in fixed chaos
Proof.(iv) = (v). Assume then that F; converges to G and that
o(t) = E(e'"9)) . Set ¢4 (t) = E(e/"FK)), then
Opk(t) = IE(FLE/F) — djp(t).



CLT. Random vectors with components in fixed chaos
Proof.(iv) = (v). Assume then that F; converges to G and that
o(t) = E(€/h9)) . Set ¢, (t) = E(€/(tF¥), then
Oiox(t) = IE(FLe/tF)) — d;0(t). Moreover, by (iv),

Oonlt) = IE(FLeR)) = E(5D(F’) (LR

— 7—22‘, e'F) (DF] DF}) )
5

t . 12
_ _ﬁE(elU,Fk) DFII(H ) — —tjgo(t),
lj 5

in fact, for j # I/, by using the Lemma and condition 4 it is easy to see
that ‘
E((DF}, DF})2) — 0.



CLT. Random vectors with components in fixed chaos
Proof.(iv) = (v). Assume then that F; converges to G and that
o(t) = E(é ’G) Set ¢, (1) = E(€/{tF)), then
Oiox(t) = IE(FLe/tF)) — d;0(t). Moreover, by (iv),

ety = IE(Fe/"F) = E(5D(F’) (LR

— 7th, e'F) (DF] DF}) )
5

t} . (12
= _JLE(eltFr ‘DFIH — —tip(t),
Le( )= —teo

in fact, for j # I/, by using the Lemma and condition 4 it is easy to see
that ‘
E((DF}, DF})2) — 0.

This implies that ¢(t) satisfies the partial differential equation

() = —tip(t), j=1,...d.
¢(0) = 1.



CLT. General random vectors

Finally, we can consider a d-dimensional random vector
Fi = (Y},..., YT which has a chaos representation

Fie=>_ Im(fhk) i=1,...,d,
m=1

with f7, € HO™.



CLT. General random vectors

Theorem

Suppose that the following conditions hold:
() Foranyi=1,...,d wehave > sup, m!||f; |[5cn < cc.
(i) Foranym>1,i,j=1,...,d we have constants ¥} such that

. Eln(f )l )1 = Jim (B} =57

©

and the matrix ¥ = (X7

T1<ij<d is positive definite for all m.

Zm1zm ZERdXd
(|v) Foranym>1,i=1,....dandp=1,....m—1

k“m ||frin,k ®p fr’ﬁ,k”%@z(m—p) =0.
—00



CLT. General random vectors

Theorem

Suppose that the following conditions hold:
() Foranyi=1,...,d wehave > sup, m!||f; |[5cn < cc.
(i) Foranym>1,i,j=1,...,d we have constants ¥} such that

. Eln(f )l )1 = Jim (B} =57

©

and the matrix ¥ = (X7

T1<ij<d is positive definite for all m.

Zm1zm ZERdXd
(|v) Foranym>1,i=1,....dandp=1,....m—1

k“m ||frin,k ®p fr’ﬁ,k”%@z(m—p) =0.
—00

Then we have Fy ki> Ny (0, X).



CLT. General random vectors

Proof. Fix v € R9. By the theorem for the unidimensional case
and condition (ii) and (iv) we have that /(v f, k) converges to
a N(0,v"X™v) as k goes to infinity.



CLT. General random vectors

Proof. Fix v € R9. By the theorem for the unidimensional case

and condition (ii) and (iv) we have that /(v f, k) converges to

a N(0,v"X™v) as k goes to infinity. Then if use the theorem for
the multidimensional case

(h@THR) oo In0Thi)) 2 (Ervonm)s (8)

where, for i > 1, ¢; are independent N(0, v X/v).



CLT. General random vectors

Proof. Fix v € R9. By the theorem for the unidimensional case

and condition (ii) and (iv) we have that /(v f, k) converges to

a N(0,v"X™v) as k goes to infinity. Then if use the theorem for
the multidimensional case

(h@THR) oo In0Thi)) 2 (Ervonm)s (8)
where, for i > 1, ¢; are independent N(0,v"X/v). Define for
every N > 1,

N

F;iv = Z Im(fm,k) )
m=1
N



CLT. General random vectors

Proof (cont.).Setalso £ = 3", ¢, Let f € C" bounded and with
bounded derivative, then

E(FTR) = f€)] < |E((TF) - (0T FY)|
+| BTN = (€M) + | ECrE) - (€M)

. 1/2
< cw( S E(Im(fm,k)2)>

m=N-+1
+| TR — (6] + | ECr() — 7€M

So, by conditions (i), 5 and (iii), if we take the supremum in k and
then the limit in N we obtain the result. m



CTL for random processes. The power variation

Let (Gt)i>0 be a Gaussian process which has centered and stationary
increments. We want to study the asymptotic properties of the
process

[nf]

1
V(G,p)f = P Z |APGIP
m =1

where A’G = G, — Gi_1, 72 = E[|A"G[*] and p > 0. Write

; AlG A7,G .
fn(]) = COV(TH’ T) , )i > 0.
and assume that
Ir(j)I? < Gj~'7¢, j > 0,for some ¢ > 0 (6)

and
im_r(j) = p(),
Set H(x) = [x|P — p,, where p, = E(|N(0,1)|P), then
H(x) = >_2, ajHj(x), with a2 > 0 and we have the following theorem:



CTL for random processes. The power variation

Theorem

(G VA(V(G. P — thy)) = (GroW) .

where W is a Brownian motion that is defined on an extension
of the filtered probability space (Q, F, (Ft)t=0, P), independent
of G and o2 is given by

o? = Zama —mlam>‘r2nv )‘?71:1 _|_2me(,)



CTL for random processes. The power variation

Proof. First we have to show the convergence of the f.d.d. Let
(ak, bx] pairwise disjoint intervals in [0, T]. Define

[nbx]
AG
G = ™ >,
. Tn
i=[nay]+1
[nbg]
1 ATG
>, H
f/ [nak]+1 ( n>

it suffices to prove that

(Gﬁ’ )1<k<d (Gb" — Gay, o(Wo, — Wa")>1gkgd ’

where o is given by (7) and W is independent of G.



CTL for random processes. The power variation

Proof (cont.). Let H4 the closed subspace of L2(Q, F, P)
generated by the random variables (A}’G/Tn)n21’1gj§[nr].
Notice that H4 is a separable Hilbert space with the scalar
product induced by the covariance function of the triangular
array (AfG/Tn)nz1,1§jg[nT]- Then we can take $ = Hy and try
to apply the general CLT to this case.



CTL for random processes. The power variation
Proof (cont.).
We have

[nby] nG
= > H(ZT)

i=[nay]+1

Yk =




CTL for random processes. The power variation
Proof (cont.).
We have

vk — 1 H(A,’-’G)




CTL for random processes. The power variation
Proof (cont.).
We have

ye = L H(A"HG)




CTL for random processes. The power variation
Proof (cont.).

We have
[nbx]
AN
yk = 1 H(2 G)
n i=[nax]+1 Tn
[nbk] o'
ATG
n i=[nax]+1 m=2 n
0o [nbk] @m
ATG
A Co]
m=2 i=[nak]+1 n
and

(6]
A?G ATG
Grlngn E 71n = h (Tn E : ) )

, . Tn
i=[nak]+1 i=[nax]+1



CTL for random processes. The power variation

Proof (cont.).
The components (YX) and (G¥) are orthogonals and it is clear

that (G) n‘}; (Gp, — Ga,)-



CTL for random processes. The power variation

Proof (cont.).
The components (YX) and (G¥) are orthogonals and it is clear

that (G) n‘g' (Gp, — Ga,)-So we have just to prove that (Y¥)
— 00
5 Ng(0,0%ly).

Then we can apply the previous theorem with

[nbx]
fk - am E : AInG om c ﬁQm
mn — .
’ \/ﬁ

-
i=[nay]+1 n




CTL for random processes. The power variation

Proof (i). Take, by simplicity, k =1,a; =0,b; = 1

© e MmN~
Ifmnllgem = YD mi=i

n < °
i=1 j=1

n—1 f
= Zm(+23 (- i) (@
i=1

@mte2Y ) =k (@)
i=1

n—oo



CTL for random processes. The power variation

Proof (ii) and (iii). Take again by simplicity and w.l.0.g
k=1,a=0,by=a =1and b, =2

azml n 2n
(T tn) ol = [T27 20 D2 G =)

i=1 j=n+1

az,m!

n n—1
= = (Z/rﬁ’(/)+2jrm2n1))|
j=1 j=1

n n—1

(7 jem(j)+ 3 jr(2n - /))
j=1 j=1

— 0 (since nr™(n) — 0).

n—oo n—oo

IA



CTL for random processes. The power variation

Proof (iv). Fix1 <p<m-1.

_ (m—r)
1 < L /APG\ %) APG\®
mn@plmn = 1 E:rﬁ(w—m( - ) @p | ,

-
ij=1 n

and we have, like in the second example, that

0o 2
: < 2¢ (Z p(/)2> .
1=1

Her,n ®p fr17,n



CTL for random processes. The power variation

Proof (tightness). The second step of the proof is to check the
tightness condition of (G, Z") where

tn) fz (A”G)

Set




CTL for random processes. The power variation

Proof (tightness) (cont.)
then we have, for s < t,
E(’Zn,N _ ZH,N|2)
[nt]—[ns]

S STTE N S CCN Y




CTL for random processes. The power variation

Proof (tightness) (cont.)
then we have, for s < t,

E(’Zn,N _ ZH,N|2)

_ Zlm(\%[nfiz::”'s <AnG> ) )

[nt]—[ns] [nt]—[ns]

[nt] — [ns] 1 T
= n mz_:z[”t]—[ns] Z Z n(|l_j|)




CTL for random processes. The power variation

Proof (tightness) (cont.)
then we have, for s < t,

E(’Zn,N _ ZH,N|2)

_ Zlm(\%[nfiz::”'s <AnG> ) )

[nt]—[ns] [nt]—[ns]

[nt] — [ns] 1 T
= n mz_:z[”t]—[ns] Z Z n(|l_j|)

< C[nz‘] — [ns]‘
n




CTL for random processes. The power variation

Proof (tightness) (cont.).
By the equivalence of the LP norms for 1 < p < oo on a fixed
sum of Wiener chaos,

E(]Ztn’N _ zPNay 12 o C[nt] ; [ns]



CTL for random processes. The power variation

Proof (tightness) (cont.).
By the equivalence of the LP norms for 1 < p < oo on a fixed
sum of Wiener chaos,

Then by the Cauchy-Schwarz inequality we obtain the
approximation

P(\Z[”N — PN 2 A ZPN - ZmN) > A)

< C([”T] — [nti])([ntz] — [nt]) < C(tz — t)?
mx* 2

forany  <t<tand X > 0.



CTL for random processes. The power variation

Proof (tightness) (cont.).
Moreover we have proved in the first step, by 9 and 6, that

lim sup E[|Z] — Z"V?] = 0.
N—oo n

Using this we conclude that

b —1)?
P(|Z{’ —Z[| >\ |20 -2 > A) < C()\4)

forany t; <t <t and X\ > 0, from which we deduce the
tightness of the sequence Z by Billingsley’s criterium. m



CTL for random processes. The bipower variation

If we want to study the asymptotic behaviour of the bipower

variation processes
[nt] q
1 A”G G
V(G: n_ _ L >0
(Gip’q)t n; Th Th ) pvq_ )
we can consider
[nt] q
1 AnG ,+1 G (n)
- ) ) Z O )
n i=1 ( n rpa a
nglP AN .G|Y
whereu;(,f’()7 ::E(AT"nG ‘A%;G‘ )




CTL for random processes. The bipower variation

Then by using the product formula we have

[nt]

:;Im( > ton)

where
frinn_z fan)n(A G>®h (A7+1G)®m—h

T T
h_O n n
and

I+h I+m—nh
Shm Zap/+haq I+m— hlI ( / > < / )dt(”

=0



CTL for random processes. The bipower variation

Now we can introduce two independent variables
X'(1), X"(2) ~ N(0, 1) that are given by

AT ATG n.G
Xin(1) — /G , Xin(2) = ap, i + bn i+1

Tn Tn Tn

with b, = (1 — r2(1))~"/2 and a, = —(1/r3(1) — 1)~ /2,



It is clear that f,",,7,7 can be represented as

fon= > Ch _XP(K1) @@ X (Km)
k/€{1,2}

for some constants c¢; . Note that all summands are
orthogonal. We obtain

j 2 2 _.
Wnal Bon = 32 168t = €
k/€{1,2}



CTL for random processes. The bipower variation

Also we have that

|{fns fin) s

— n
- Z Ch1 7777 hm Cg1 7777 9m

he{1,2},9:€{1,2} =1
< cp(Cr(k—1)™.

:js

(X7 (hn), X{k(91)) 4

And by using these results we can prove the central limit
theorem for V(G; p, q){.



CTL for random processes. The multipower variation

A similar extension works for the multipower variation

1[nt —k+1 k

V(Gap17"'7pk Z H
i=1 =

and for the joint multipower variation:

b
’ p17"'>pk20>

An

H—j 1G

(V(G, Pl P L V(G PO, ,pg);’) .



CTL for random processes. The multipower variation

Define
(n) _E ATG|pi ALG Pk}
pp1 777 P H Tn . ‘ Tn '
We have
Theorem

(m) . 1/2
(Gtv ( p/17' . plk)I ppq plk >1</<d> (vaﬁ Wt)a

-----

where W is a d-dimensional Brownian, defined in an extension
of the original filtered space, independent of G, 3 is a
d x d-dimensional matrix given by

By = nleooncov(vQ(pq,...,p;;)q', VQ(pq',...,pf()?) . 1<ij<d,

and (Q;);>1 Is stationary centered discrete time Gaussian
process with correlation function p(j).
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