
New central limit theorems for functionals of
Gaussian processes and their applications

José M. Corcuera

February 9, 2010

Abstract

As a consequence of the seminal work of Nualart and Peccati in 2005 we have
new central limit theorems for functional of Gaussian processes that have allowed
us to elucidate the asymptotic behavior of the multipower variation of certain "am-
bit processes". This survey intends to explain the role of the Malliavin calculus
to reach these results. It was presented in the workshop "Ambit processes, non-
semimartingales and applications", held in Sandbjerg (Denmark) January 26th,
2010.

1 Introduction
Consider a sequence of Gaussian random variables {Xn, n ≥ 1} with E(Xj) = 0,
E(X2

j ) = 1, E(XjXk) = ρ(j, k), j, k ≥ 1. Let H(x) be a real value function such
that, E(H(X1)) = 0 and E(H(X1))2 < ∞. Then, a natural problem, is to find
suitable conditions ensuring that

Fn :=
1√
n

n∑
i=1

H(Xi) →
n→∞

N(0, 1).

So far, the main way of solving this problem was to check if the moments of Fn

converged to the moments of the standard normal distribution, that is, to see if

lim
n→∞

E(F p
n) →

n→∞

{
(p− 1)!!, if p is even
0 if p is odd.

To prove this one expanded H(x) in the form

H(x) =
∞∑

j=1

cjHj(x),

where Hj is the jth Hermite polynomial

Hj(x) = (−1)nex2/2 dj

dxj
(e−x2/2), j ≥ 1,
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and by using the diagram formula to calculate the asymptotic moments of Fn.
Consider a set of vertices {(i, j), 1 ≤ i ≤ p, 1 ≤ j ≤ li} and a diagram G with the

following properties

1. Edges may pass only if the first coordinates of the vertices are different.

2. Each vertex has one edge.

Let Γ = Γ(l1, ..., ln) denote the set of all these diagrams and for G ∈ Γ by A(G)
the set of edges G. Now for a w ∈ G, w = ((i1, j1), (i2, j2)), where i1 < i2, define
the functions d1(w) = i1, d2(w) = i2. Then

E(Πp
i=1Hli(Xi)) =

∑
G∈Γ

Πw∈A(G)ρ(d1(w), d2(w)).

As a particular case we have

E(Hn(X1)Hm(X2)) = δnmm!ρm(1, 2),

where δnm is the Kronecker symbol.
Since the work of Nualart and Peccatti in (2005) we know that it is sufficient to

check the behaviour of the second and the fourth order moments of (Fn) , even we
can get equivalent conditions for the convergence of the fourth order moments that are
easier to check. Moreover the random variables Fn can be measurable with respect to
a Gaussian process, not necessarily discrete.

The theoretical framework to obtain these results is the so called The Malliavin
Calculus.

2 Basic Malliavin Calculus
Consider a complete probability space (Ω,F , P ) and a Gaussian subspaceH1 of L2(Ω,F , P )
whose elements are zero-mean Gaussian random variables. Let H be a separable Hilbert
space with scalar product denoted by 〈·, ·〉H and norm || · ||H. We will assume that there
is an isometry

W : H → H1

h 7→ W (h)

in the sense that
E[W (h1)W (h2)] = 〈h1, h2〉H.

It is easy to see that this map has to be linear. W is called an isonormal Gaussian
process.

Example 1. Let {ei, i ≥ 1} be the canonical basis of RN with a scalar product 〈ei, ej〉 =
ρ(i, j) consider H =span {ei, i ≥ 1} . Then {W (ei), i ≥ 1}will be a sequence of cen-
tered Gaussian random variables with covariance function ρ(·, ·).
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Example 2. Take 〈1[0,t](·),1[0,s](·)〉 = ρ(s, t), and H = span{1[0,t](·), 0 ≤ t ≤ T}
then

(
Wt := W (1[0,t])

)
is a centered Gaussian process with covariance function ρ(·, ·).

Example 3. If, in the previous example, we take ρ(s, t) = s∧t then H = L2([0, T ], dx)
and

(
Wt := W (1[0,t])

)
is a Brownian motion, moreover W (h) =

∫ T

0
hsdWs, the

Wiener integral of the function h with respect to the Brownian motion (Wt) .

Example 4. H = L2(A,A, µ) where (A,A ) is a measurable space and µ is a σ-finite
measure without atoms (i.e. for any A ∈ A such that µ(A) > 0 there is B ∈ A such
that 0 < µ(B) < µ(A)).

The process {W (A) := W (1A), A ∈ A, µ(A) < ∞} is called a Gaussian white
noise with intensity µ on the space (A,A ).

We can define a Wiener integral of a function h ∈ H with respect to the process
(W (A)) and we have that W (h) =

∫
A hsdWs. We can also construct, in a standard

way, the multiple Wiener integral for functions in L2(An,An, µn) and it can be seen
that, if h ∈ H, ||h||H = 1, Hn(W (h)) =

∫
An h(t1)...h(tn)dWt1 ...dWtn .

For any m ≥ 2, we denote by Hm the closed subspace of L2(Ω,F , P ) generated
by the random variables Hm(W (h)), where h ∈ H, ||h||H = 1. It is called the m-th
Wiener chaos. Then,

Theorem 5. Every random variable Y ∈ L2(Ω,G, P ), where G is the σ-field gener-
ated by W, can be uniquely expanded as

Y = E(Y ) +
∞∑

n=1

Yn,

where Yn ∈ Hn.

Proof. If Y ∈ L2(Ω,G, P ) is orthogonal to every Hn(W (h)), h ∈ H, ||h||H = 1
then Y is orthogonal to e

Pn
i=1 λiW (ei), λi ∈ R, i ≥ 1 and (ei)i≥1 an orthonormal basis

of H. From here E(Y |W (e1), ...W (en)) = 0, a.s and since E(Y |W (e1), ...W (en))
converges a.s. to Y , then Y = 0, a.s..

Suppose that H is infinite-dimensional and let {ei, i ≥ 1} be an orthonormal basis
of H. Denote by Λ the set of all sequences a = (a1, a2, ...), ai ∈ N, such that all the
terms, except a finite number of them, vanish. For a ∈ Λ we set a! = Π∞i=1ai! and
|a| =

∑∞
i=1 ai. For any multiindex a ∈ Λ we define

Φa =
1√
a!

Π∞i=1Hai
(W (ei)).

The family of random variables {Φa, a ∈ Λ} is an orthonormal system. In fact

E [Π∞i=1Hai
(W (ei))Π∞i=1Hbi

(W (ei))] = δaba! ,

Moreover, {Φa| a ∈ Λ, |a| = m} is a complete orthonormal system in Hm .
Let a ∈ Λ with |a| = m and denote ⊗∞i=1e

⊗ai
i = e⊗a. Where ⊗ is the tensor

product. The mapping

Im : H�m → Hm

ẽ⊗a 7→ Π∞i=1Hai
(W (ei)),
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between the symmetric tensor product H�m, equipped with the norm
√

m! ‖·‖H⊗m ,
and the m-th chaosHm is a linear isometry. Here ⊗̃ denotes the symmetrization of the
tensor product ⊗ and I0 is the identity in R.

For any h = h1 ⊗ · · · ⊗ hm and g = g1 ⊗ · · · ⊗ gm ∈H⊗m, we define the p-th
contraction of h and g, denoted by h⊗p g, as the element of H⊗2(m−p) given by

h⊗p g = 〈h1, g1〉H · · · 〈hp, gp〉Hhp+1 ⊗ · · · ⊗ hm ⊗ gp+1 ⊗ · · · ⊗ gm.

This definition can be extended by linearity to any element of H⊗m. h ⊗p g does not
necessarily belong to H�(2m−p), even if h and g belong to H�m. We denote by h⊗̃pg
the symmetrization of h⊗p g.

Proposition 6. For any h ∈ H�p and g ∈ H�q, we have

Ip(h)Iq(g) =
p∧q∑
r=0

r!
(

p
r

)(
q
r

)
Ip+q−2r(h⊗̃rg).

Proof. First, note that
I1(ei) = W (ei).

Let a ∈ Λ with |a| = p and q = 1. Due to linearity of Ip it suffices to consider the case
h = ẽ⊗a, g = ej . It holds that

Ip(ẽ⊗a)I1(ej) = Π∞i=1Hai
(W (ei))W (ej).

Assume that j is an index such that aj = 0. Then

ẽ⊗a⊗̃1ej = 0

and
Π∞i=1Hai

(W (ei))W (ej) = Ip+1(ẽ⊗a⊗̃ej),

so we have that

Ip(ẽ⊗a)I1(ej) = Ip+1(ẽ⊗a⊗̃ej) + pIp−1(ẽ⊗a⊗̃1ej).

Assume now that aj 6= 0. Then we obtain the identity

ẽ⊗a⊗̃1ej =
aj

p
ẽ⊗a′(j)

with a′i(j) = ai if i 6= j and a′j(j) = aj − 1. Furthermore,since the Hermite polyno-
mials verify

xHn(x) = Hn+1(x) + nHn−1(x).

we have that

Π∞i=1Hai
(W (ei))W (ej)

= Π∞i=1,i 6=jHai
(W (ei)(Haj+1(W (ej)) + ajHaj−1(W (ej)))

= Ip+1(ẽ⊗a⊗̃ej) + pIp−1(ẽ⊗a⊗̃1ej),

Hence, the multiplication formula is true for q = 1. The general formula follows
by induction.
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Theorem 7. Let h ∈ H with ||h||H = 1. Then for every m ≥ 1 we have

Im(h⊗m) = Hm(W (h))

Proof. For m = 1 it is clear. then

Im+1(h⊗(m+1)) = Im(h⊗m)I1(h)−mIm−1(h⊗(m−1))
= Hm(W (h)W (h)−mHm−1(W (h))
= Hm+1

Theorem 8. Every random variable Y ∈ L2(Ω,G, P ), where G is the σ-field gener-
ated by W , can be uniquely expanded as

Y =
∞∑

n=0

In(hn),

where hn ∈ H�n.

Proof. It is immediate from the previous chaos decomposition and the definition of
Im.

Let S be the class of smooth random variables F = f(W (h1), ...,W (hn)), f∈C∞
p (Rn)

(f and all its partial derivatives have polynomial growth), we can define its differential
as

DF =
n∑

i=1

∂if(W (h1),W (h2), ...,W (hn))hi.

DF is as a random variable with values in H. Then we can built a closed map

D : D1,2 ⊆ L2(Ω, R) −→ L2(Ω,H)
F 7→ DF.

where D1,2 is the closure of the class of smooth random variables with respect to
the norm

||F ||1,2 =
(
E(|F |2) + E(||DF ||2H)

)1/2
.

For instance D(Hn(W (h))) = nHn−1(W (h))h, n ≥ 1, (H0 := 1).

Proposition 9. Set h ∈ H�n, then

E(‖DIn(h)‖2H) = nn! ‖h‖2H⊗n

Proof. It is sufficient to consider h = h⊗n
1 , h1 ∈ H. Then, In(h⊗n

1 ) = ||h1||nHHn(W (h1/||h1||H)),

DIn(h) = n||h1||n−1
H Hn−1(W (h1/||h1||H))h1,

and
‖DIn(h)‖2H = n2||h1||2n

H Hn−1(W (h1/||h1||H))2.
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Therefore
E(‖DIn(h)‖2H) = n2||h1||2n

H (n− 1)! = nn!||h||2H⊗n

Let u be an element of L2(Ω,H) and assume there is an element δ(u) ∈ L2(Ω)
such that

E(〈DF, u〉H) = E(Fδ(u))

for any F ∈ D1,2, then we say that u is in the domain of δ and that δ is the adjoint
operator of D. For instance

Proposition 10. Let h be an element of H,

δ(h) = W (h)

Proof. Without loss of generality we can assume that ||h||H = 1 and that F =
f(W (h),W (h2), ...,W (hn)) with hi orthogonal to h. Then

E(〈DF, h〉H)

= E(∂1f) = E(
∫

R
∂1f(x1,W (h2), ...,W (hn))

1√
2π

e−
1
2 x2

1dx1)

= E(
∫

R
x1f(x1,W (h2), ...,W (hn))

1√
2π

e−
1
2 x2

1dx1

= E(FW (h)).

Proposition 11. If

u =
n∑

i=1

Fjhj

where Fj are smooth random variables and hj are elements of H then

δ(u) =
n∑

j=1

FjW (hj)−
n∑

j=1

〈DFj , hj〉H

Proof. Let T ∈ S,

E(Tδ(u)) =
n∑

j=1

E(TFjW (hj))−
n∑

j=1

E(T 〈DFj , hj〉H)

=
n∑

j=1

E(〈D(TFj), hj〉H)−
n∑

j=1

E(T 〈DFj , hj〉H)

=
n∑

j=1

E(〈D(TFj)− TDFj , hj〉H)

=
n∑

j=1

E(Fj〈DT, hj〉H) = E(〈DT,
n∑

j=1

Fjhj〉H)

= E(〈DT, u〉H)
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Proposition 12. If
u = Hn−1(W (h))h

where h ∈ H, ‖h‖H = 1 then

δ(u) = Hn(W (h)).

Proof.

δ(u) = Hn−1(W (h))W (h)− 〈DHn−1(W (h)), h〉H
= Hn−1(W (h))W (h)− (n− 1)Hn−2(W (h))〈h, h〉H
= Hn−1(W (h))W (h)− (n− 1)Hn−2(W (h)) = Hn(W (h)).

Corollary 13. Let F ∈ Hn then

δDF = nF.

Proof. It is sufficient to consider F of the form F = Hn(W (h)), h ∈ H, ‖h‖H = 1.
Then

δDF = δ(nHn−1(W (h))h) = nHn(W (h)) = nF.

Lemma 14. Consider two random variables F = In(f), G = Im(g), where n, m ≥ 1.
Then

E(〈DF, DG〉2H) =
n∧m∑
r=1

(n!m!)2

((n− r)!(m− r)!(r − 1)!)2
∥∥f⊗̃rg

∥∥2

H�(n+m−2r) .

Proof. It is sufficient to consider f = ẽ⊗a and g = ẽ⊗b, then

DIn(f) =
∞∑

j=1

ajIn−1(ẽ⊗a′(j))ej ,

DIm(g) =
∞∑

k=1

bkIm−1(ẽ⊗b′(k))ek,

and

〈DIn(f), DIm(g)〉H

=

∞X
k=1

akbkIn−1(ẽ⊗a′(j))Im−1(ẽ⊗b′(k))

=

∞X
k=1

akbk

m∧n−1X
r=0

r!

�
n − 1

r

��
m − 1

r

�
Im+n−2−2r(ẽ⊗a′(k)e⊗r ẽ⊗b′(k)).
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Hence,

〈DIn(f), DIm(g)〉H

=

m∧n−1X
r=0

r!

�
n − 1

r

��
m − 1

r

�
Im+n−2−2r(

∞X
k=1

akbkẽ⊗a′(k)e⊗r ẽ⊗b′(k))

= nm

m∧n−1X
r=0

r!

�
n − 1

r

��
m − 1

r

�
Im+n−2−2r(ge⊗ae⊗r+1

ge⊗b).

Finally

E (〈DIn(f), DIm(g)〉H)2

= (nm)2
m∧n−1X

r=0

(r!)2
�

n − 1
r

�2�
m − 1

r

�2 ge⊗ae⊗r+1
ge⊗b

2

H�(n+m−2−2r)

3 Central limit theorems of random variables
Theorem 15. Fix n ≥ 2. Consider a sequence {Fk = In(fk), k ≥ 1} such that

E(F 2
k ) →

k→∞
σ2 (1)

The following statements are equivalent:

(i) Fk
L→

k→∞
N(0, σ2).

(ii) E(F 4
k ) →

k→∞
3σ4.

(iii) ‖fk ⊗r fk‖H⊗2(n−r) →
k→∞

0, for all 1 ≤ r ≤ n− 1 .

(iv) ‖DFk‖2H
L2(Ω)→
k→∞

nσ2.

Proof. To simplify we take σ2 = 1. We shall prove the following implications

(iv) ⇒ (i) ⇒ (ii) ⇒ (iii) ⇒ (iv).

(iv) ⇒ (i). First the sequence (Fk) is tight since it is bounded in L2(Ω) by condition
(1).Second, assume that Fk converges to G. Again by (1), G ∈ L2(Ω). Then its
characteristic function ϕ(t) = E(eitG) is differentiable and ϕ′(t) = iE(GeitG). For
every k ≥ 1, define ϕk(t) = E(eitFk), then ϕ′k(t) = iE(FkeitFk). Clearly, FkeitFk

converges in law to GeitG and the boundedness in L2(Ω), implies convergence of the
first order moments.
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(iv) ⇒ (i)(cont.). Then, ϕ′k(t) → ϕ′(t). Moreover,

ϕ′k(t) = iE(FkeitFk) =
i

n
E(δD(Fk)eitFk)

= − t

n
E(eitFk〈DFk, DFk〉H)

= − t

n
E(eitFk ‖DFk‖2H) → −tϕ(t),

in fact, by (iv)∣∣∣E(eitFk ‖DFk‖2H)− nϕ(t)
∣∣∣ ≤ E(

∣∣∣‖DFk‖2H − n
∣∣∣) + n

∣∣E(eitFk)− ϕ(t)
∣∣ .

This implies that ϕ(t) satisfies the differential equation

ϕ′(t) = −tϕ(t), ϕ(0) = 1.

(i) ⇒ (ii). It is well known that, for any 1 < p < q < ∞ the norms ‖·‖p , ‖·‖q are
equivalent in any Wiener chaos Hn, then convergence in law and convergence of the
second order moments implies convergence of the moments of any order.

(ii) ⇒ (iii).By using the product formula

In(fk)2 =

nX
r=0

r!

�
n
r

�2

I2(n−r)(fk e⊗rfk)

= n!||fk||2 + I2n

�
fk e⊗fk

�
+

n−1X
r=1

r!

�
n
r

�2

I2(n−r)(fk e⊗rfk).

Then

E(In(fk)4) = (n!)2 ||fk||4

+(2n)!
fk e⊗fk

2

H⊗2n +

n−1X
r=1

(r!)2
�

n
r

�4

(2(n − r))!
fk e⊗rfk

2

H⊗2(n−r) ,

also we have that
||fk⊗̃fk||2H⊗2n = fk ⊗ fk ⊗2n fk⊗̃fk.

(ii) ⇒ (iii). Therefore,
∥∥fk⊗̃fk

∥∥2

H⊗2n is the sum of (2n)!

(n!)2
terms of the form

(n!)2

(2n)! ||fk ⊗a fk||2 with a = 0, 1, .., n. And for a = 0, n

||fk ⊗a fk||2H⊗2(n−a) = ||fk||4.

Consequently
E(In(fk)4) = 3 (n!)2 ||fk||4 + Rk,

and, by the hypothesis (ii) Rk → 0, equivalently ‖fk ⊗r fk‖2H⊗2(n−r) → 0, 1 ≤ r ≤
n− 1.
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(iii) ⇒ (iv). We know that E(‖DIn(h)‖2H) = nn! ‖h‖2H , then

E((‖DFk‖2H − n)2) = E(‖DFk‖4H)− 2n2n! ‖fk‖2H⊗n + n2,

therefore it suffices to prove that (iii) implies that E(‖DFk‖4H) → n2. But, by the
previous Lemma we have that

E(‖DFk‖4
H) =

n−1X
r=1

(n!)4�
((n − r)!)2 (r − 1)!

�2 fk e⊗rfk


H�2(n−r) + n2(n!)2 ‖fk‖4

H⊗n ,

so, by (iii), E(‖DFk‖4H) → n2.
Example
Let (Bt)t≥0 be a Brownian motion and H = L2([0, 1], dx). Then

Fk :=
√

k

(
1
k

∫ 1

0

B2
t t1/k−2dt− 1

)
→

k→∞
N(0, 2).

It is easy to see that

Fk =

√
k

k − 1

∫ 1

0

∫ 1

0

(
(s ∨ t)1/k−1 − 1

)
dBsdBt

= I2(fk),

where

fk =

√
k

k − 1

(
(s ∨ t)1/k−1 − 1

)
∈ H�2

We have that

E(F 2
k ) = 2||fk||2H⊗2 =

2k

(k − 1)2

∫ 1

0

∫ 1

0

(
(s ∨ t)1/k−1 − 1

)
dsdt

=
4k

(k − 1)2

(
k

2
− 2k

k + 1
+

1
2

)
→

k→∞
2.

Then it is enough to see that

||fk ⊗1 fk||2H⊗2 →
k→∞

0.

But

||fk ⊗1 fk||2H⊗2

=
k2

(k − 1)4

∫ 1

0

∫ 1

0

(∫ 1

0

(
(s ∨ t)1/k−1 − 1

)(
(s ∨ u)1/k−1 − 1

)
ds

)2

dtdu,

and
∫ 1

0

∫ 1

0

(∫ 1

0

(
(s ∨ t)1/k−1 − 1

) (
(s ∨ u)1/k−1 − 1

)
ds
)2

dtdu = O(k).
Example
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Consider a sequence of stationary, normalized, centered Gaussian random variables
(Xi)i≥1. We want to study the asymptotic behavior of the sequence

Fk :=
1√
k

k∑
i=1

Hm(Xi) ,

m ≥ 2. We can take H1 = span{Xi, i ≥ 1}, and H ≡ H1. The inner product on
H is then induced by the covariance function ρ(k) = cov(X1, X1+k) of the sequence
(Xi)i≥1 (note that ρ(0) = 1).We obtain the following representation

Fk =
1√
k

k∑
i=1

Hm(Xi) = Im

(
1√
k

k∑
i=1

X⊗m
i

)
.

Set

hk =
1√
k

k∑
i=1

X⊗m
i .

Assume that
∞∑

j=1

|ρ(j)|m < ∞. (2)

It holds that

m!||hk||2H⊗m =
m!
k

k∑
i,j=1

(E(XiXj))m =
m!
k

k∑
i,j=1

ρm(i− j)

= m!

1 + 2
k−1∑
j=1

ρm(j)
(

1− j

k

)→ m!

1 + 2
∞∑

j=1

ρm(j)

 =: σ2.

Note the identity

hk ⊗r hk =
1
k

k∑
i,j=1

ρr(i− j)X⊗(m−r)
i ⊗X

⊗(m−r)
j ,
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This implies

‖hk ⊗r hk‖2H⊗2(m−r)

=
1
k2

k∑
i,j,i′,j′=1

ρr(i− j)ρr(i′ − j′)ρm−r(i− i′)ρm−r(j − j′)

=
1
k

k−1∑
i,j,i′=0

ρr(i)ρr(j − i′)ρm−r(j)ρm−r(i− i′)(1− i ∨ j ∨ i′

k
)

≤ 1
k

k−1∑
i,j,i′=0

ρ(i)ρ(j − i′)ρ(j)ρ(i− i′)

=
1
k

k−1∑
i=0

k−1∑
j=0

ρ(j)ρ(i− j)

2

≤ 2ε

 ∞∑
j=0

ρ(j)2

2

,

for any ε > 0. So the last term converges to 0 under assumption (2) for 1 ≤ r ≤ m−1,

and we deduce that Fk
L−→

k→∞
N(0, σ2).

For d ≥ 2, fix d natural numbers, 1 ≤ n1 ≤ ... ≤ nd. Consider a sequence of
random vectors

Fk = (F 1
k , .., F d

k ) = (In1(f
1
k ), ..., Ind

(fd
k )), (3)

where f i
k ∈ H�ni . We have a multidimensional version of the previous theorem,

Theorem 16. Let (Fk)k≥1 be a sequence of random vectors of the form (3) such that,
for every 1 ≤ i, j ≤ d

lim E(F i
kF j

k ) = δij , (4)

then the following statements are equivalent

(i) For every i = 1, ..., d, F i
k

L→
k→∞

N(0, 1).

(ii) For every i = 1, ..., d, E(
(
F i

k

)4
) →

k→∞
3.

(iii)
∥∥f i

k ⊗r f i
k

∥∥
H⊗2(ni−r) →

k→∞
0, for all 1 ≤ r ≤ ni − 1, 1 ≤ i ≤ d .

(iv) For every i = 1, ..., d,
∥∥DF i

k

∥∥2

H

L2(Ω)→
k→∞

ni.

(v) Fk
L→

k→∞
Nd(0, Id)

Proof.
(iv) ⇒ (v). Assume then that Fk converges to G and that ϕ(t) = E(ei〈t,G〉) . Set
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ϕk(t) = E(ei〈t,Fk〉), then ∂jϕk(t) = iE(F j
kei〈t,Fk〉) → ∂jϕ(t). Moreover, by (iv),

∂jϕk(t) = iE(F j
kei〈t,Fk〉) =

i

nj
E(δD(F j

k )ei〈t,Fk〉)

= − 1
nj

d∑
l=1

tlE(ei〈t,Fk〉〈DF j
k , DF l

k〉H)

= − tj
nj

E(ei〈t,Fk〉
∥∥∥DF j

k

∥∥∥2

H
) → −tjϕ(t),

in fact, for j 6= l, by using the Lemma and condition (4) it is easy to see that

E(〈DF j
k , DF l

k〉2H) → 0.

This implies that ϕ(t) satisfies the partial differential equation

∂jϕ(t) = −tjϕ(t), j = 1, ..., d.

ϕ(0) = 1.

Finally, we can consider a d-dimensional random vector Fk = (Y 1
k , . . . , Y d

k )T

which has a chaos representation

F i
k =

∞∑
m=1

Im(f i
m,k) , i = 1, . . . , d ,

with f i
m,k ∈ H�m.

Theorem 17. Suppose that the following conditions hold:

(i) For any i = 1, . . . , d we have
∑∞

m=1 supk m!||f i
m,k||2H⊗m < ∞.

(ii) For any m ≥ 1, i, j = 1, . . . , d we have constants Σm
ij such that

lim
k→∞

E[Im(f i
m,k)Im(f j

m,k)] = lim
k→∞

〈
f i

m,k, f j
m,k

〉
H�m

= Σm
ij ,

and the matrix Σm = (Σm
ij )1≤i,j≤d is positive definite for all m.

(iii)
∑∞

m=1 Σm = Σ ∈ Rd×d.

(iv) For any m ≥ 1, i = 1, . . . , d and p = 1, . . . ,m− 1

lim
k→∞

||f i
m,k ⊗p f i

m,k||2H⊗2(m−p) = 0.

Then we have Fk
L−→

k→∞
Nd(0,Σ).

13



Proof. Fix υ ∈ Rd. By the theorem for the unidimensional case and condition (ii)
and (iv) we have that Im(υT fm,k) converges to a N(0, υT Σmυ) as k goes to infinity.
Then if use the theorem for the multidimensional case(

I1(υT f1,k), ..., Im(υT fm,k)
) L−→

k→∞
(ξ1, ..., ξm), (5)

where, for i ≥ 1, ξi are independent N(0, υT Σiυ). Define for every N ≥ 1,

FN
k =

N∑
m=1

Im(fm,k) ,

ξN =
N∑

m=1

ξm

Set also ξ =
∑∞

m=1 ξm. Let f ∈ C1 bounded and with bounded derivative, then∣∣E(f(υT Fk)− f(ξ))
∣∣ ≤

∣∣E(f(υT Fk)− f(υT FN
k ))

∣∣
+
∣∣∣E(f(υT FN

k )− f(ξN ))
∣∣∣+ ∣∣∣E(f(ξ)− f(ξN ))

∣∣∣
≤ C|υ|

( ∞∑
m=N+1

E(Im(fm,k)2)

)1/2

+
∣∣∣E(f(υT FN

k )− f(ξN ))
∣∣∣+ ∣∣∣E(f(ξ)− f(ξN ))

∣∣∣ .
So, by conditions (i), (5) and (iii), if we take the supremum in k and then the limit in
N we obtain the result.

4 Functional central limit theorems. The power and
multipower variation

Let (Gt)t≥0 be a Gaussian process which has centered and stationary increments. We
want to study the asymptotic properties of the process

V (G, p)n
t =

1
nτp

n

[nt]∑
i=1

|∆n
i G|p ,

where ∆n
i G = G i

n
−G i−1

n
, τ2

n = E[|∆n
i G|2] and p > 0. Write

rn(j) = Cov
(∆n

1G

τn
,
∆n

1+jG

τn

)
, j ≥ 0.

and assume that
|rn(j)|2 ≤ Cj−1−ε, j ≥ 0, for some ε > 0 (6)
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and
lim

n→∞
rn(j) = ρ(j),

Set H(x) = |x|p−µp, where µp = E(|N(0, 1)|p), then H(x) =
∑∞

j=2 ajHj(x), with
a2 > 0 and we have the following theorem:

Theorem 18. (
Gt,

√
n(V (G, p)n

t − tµp)
)

L→
n→∞

(
Gt,σWt

)
,

where W is a Brownian motion that is defined on an extension of the filtered probability
space (Ω,F , (Ft)t≥0, P ), independent of G and σ2 is given by

σ2 =
∞∑

m=2

σ2
m, σ2

m = m!a2
mλ2

m , λ2
m = 1 + 2

∞∑
i=1

ρm(i). (7)

Proof. First we have to show the convergence of the f.d.d. Let (ak, bk] pairwise
disjoint intervals in [0, T ]. Define

Gk
n = τn

[nbk]∑
i=[nak]+1

∆n
i G

τn
,

Y k
n =

1√
n

[nbk]∑
i=[nak]+1

H
(∆n

i G

τn

)
,

it suffices to prove that(
Gk

n, Y k
n

)
1≤k≤d

L−→
(
Gbk

−Gak
, σ(Wbk

−Wak
)
)

1≤k≤d
,

where σ is given by (7) and W is independent of G.
Let H1 the closed subspace of L2(Ω,F , P ) generated by the random variables

(∆n
j G/τn)n≥1,1≤j≤[nT ]. Notice that H1 is a separable Hilbert space with the scalar

product induced by the covariance function of the triangular array (∆n
j G/τn)n≥1,1≤j≤[nT ].

Then we can take H = H1 and try to apply the general CLT to this case.
We have

Y k
n =

1√
n

[nbk]∑
i=[nak]+1

H
(∆n

i G

τn

)

=
1√
n

[nbk]∑
i=[nak]+1

∞∑
m=2

amHm

(
∆n

i G

τn

)

=
∞∑

m=2

Im

 am√
n

[nbk]∑
i=[nak]+1

(
∆n

i G

τn

)⊗m
 ,
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and

Gk
n = τn

[nbk]∑
i=[nak]+1

∆n
i G

τn
= I1

τn

[nbk]∑
i=[nak]+1

∆n
i G

τn

 ,

The components
(
Y k

n

)
and

(
Gk

n

)
are orthogonals and it is clear that

(
Gk

n

) a.s.→
n→∞

(Gbk
−Gak

).So we have just to prove that
(
Y k

n

) L→
n→∞

Nd(0, σ2Id).
Then we can apply the previous theorem with

fk
m,n =

am√
n

[nbk]∑
i=[nak]+1

(
∆n

i G

τn

)⊗m

∈ H�m.

Proof (i). Take, by simplicity, k = 1, a1 = 0, b1 = 1

||f1
m,n||2H⊗m =

a2
mm!
n

n∑
i=1

n∑
j=1

rm
n (|i− j|)

= a2
mm!(1 + 2

n−1∑
i=1

(1− i

n
)rm

n (i)) (8)

→
n→∞

a2
mm!(1 + 2

∞∑
i=1

ρm(i)) = σ2
m. (9)

Proof (ii) and (iii). Take again by simplicity and w.l.o.g k = 1, a1 = 0, b1 = a1 = 1
and b2 = 2

|
〈
f1

m,n, f2
m,n

〉
H�m | =

∣∣∣∣∣∣a
2
mm!
n

n∑
i=1

2n∑
j=n+1

rm
n (j − i)

∣∣∣∣∣∣
=

∣∣∣∣∣∣a
2
mm!
n

 n∑
j=1

jrm
n (j) +

n−1∑
j=1

jrm
n (2n− j)

∣∣∣∣∣∣
≤ a2

mm!
n

 n∑
j=1

jrm(j) +
n−1∑
j=1

jrm(2n− j)


→

n→∞
0 (since nrm(n) →

n→∞
0).

Proof (iv). Fix 1 ≤ p ≤ m− 1.

f1
m,n ⊗p f1

m,n =
1
n

n∑
i,j=1

rp
n(|i− j|)

(
∆n

i G

τn

)⊗(m−r)

⊗p

(
∆n

j G

τn

)⊗(m−r)

,

and we have, like in the second example, that

∥∥f1
m,n ⊗p f1

m,n

∥∥2 ≤ 2ε

( ∞∑
l=1

ρ(l)2
)2

.
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Proof (tightness). The second step of the proof is to check the tightness condition
of (Gt, Z

(n)
t ) where

Z
(n)
t =

1√
n

[nt]∑
i=1

H
(∆n

i G

τn

)
.

Set

Zn,N
t :=

N∑
m=2

Im

( 1√
n

[nt]∑
i=1

(
∆n

i G

τn

)⊗m )
.

then we have, for s < t,

E(|Zn,N
t − Zn,N

s |2)

= E(
N∑

m=2

Im

( 1√
n

[nt]−[ns]∑
i=1

(
∆n

i G

τn

)⊗m )2

)

=
[nt]− [ns]

n

N∑
m=2

1
[nt]− [ns]

[nt]−[ns]∑
i=1

[nt]−[ns]∑
j=1

rm
n (|i− j|)

≤ C
[nt]− [ns]

n
.

By the equivalence of the Lp norms for 1 < p < ∞ on a fixed sum of Wiener
chaos,

E(|Zn,N
t − Zn,N

s |4)1/2 ≤ C
[nt]− [ns]

n
Then by the Cauchy-Schwarz inequality we obtain the approximation

P
(
|Zn,N

t − Zn,N
t1 | ≥ λ, |Zn,N

t2 − Zn,N
t | ≥ λ

)
≤ C

([nt]− [nt1])([nt2]− [nt])
n2λ4 ≤ C

(t2 − t1)2

λ4

for any t1 ≤ t ≤ t2 and λ > 0.
Moreover we have proved in the first step, by (9) and (6), that

lim
N→∞

sup
n

E[|Zn
t − Zn,N

t |2] = 0.

Using this we conclude that

P
(
|Zn

t − Zn
t1 | ≥ λ, |Zn

t2 − Zn
t | ≥ λ

)
≤ C

(t2 − t1)2

λ4

for any t1 ≤ t ≤ t2 and λ > 0, from which we deduce the tightness of the sequence
Zn

t by Billingsley’s criterium.
If we want to study the asymptotic behaviour of the bipower variation processes

V (G; p, q)n
t =

1
n

[nt]∑
i=1

∣∣∣∣∆n
i G

τn

∣∣∣∣p ∣∣∣∣∆n
i+1G

τn

∣∣∣∣q , p, q ≥ 0 ,
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we can consider

Zn
t :=

1√
n

[nt]∑
i=1

(∣∣∣∣∆n
i G

τn

∣∣∣∣p ∣∣∣∣∆n
i+1G

τn

∣∣∣∣q − µ(n)
p,q

)
, p, q ≥ 0 ,

where µ
(n)
p,q := E

(∣∣∣∆n
i G

τn

∣∣∣p ∣∣∣∆n
i+1G

τn

∣∣∣q) .

Then by using the product formula we have

Zn
t =

∞∑
m=2

Im

( 1
n

[nt]∑
i=1

f i
m,n

)
,

where

f i
m,n =

m∑
h=0

s
(n)
h,m

(∆n
i G

τn

)⊗h

⊗̃
(∆n

i+1G

τn

)⊗m−h

and

s
(n)
h,m =

∞∑
l=0

ap,l+haq,l+m−hl!
(

l + h
l

)(
l + m− h

l

)
rl
n(1).

Now we can introduce two independent variables Xn
i (1), Xn

i (2) ∼ N(0, 1) that
are given by

Xn
i (1) =

∆n
i G

τn
, Xn

i (2) = an
∆n

i G

τn
+ bn

∆n
i+1G

τn

with bn = (1− r2
n(1))−1/2 and an = −(1/r2

n(1)− 1)−1/2.
It is clear that f i

m,n can be represented as

f i
m,n =

∑
kl∈{1,2}

cn
k1,...,km

Xn
i (k1)⊗ · · · ⊗Xn

i (km) ,

for some constants cn
k1,...,km

. Note that all summands are orthogonal. We obtain

||f i
m,n||2H⊗m

1
=

∑
kl∈{1,2}

|cn
k1,...,km

|2 =: cn
m.

Also we have that

|〈f1
m,n, f1+k

m,n 〉H⊗m |

=
∑

hl∈{1,2},gl∈{1,2}

cn
h1,...,hm

cn
g1,...,gm

m∏
l=1

〈Xn
i (hl), Xn

i+k(gl)〉H1

≤ cn
m(Cr(k − 1))m.

And by using these results we can prove the central limit theorem for V (G; p, q)n
t .
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A similar extension works for the multipower variation

V (G, p1, . . . , pk)n
t =

1
n

[nt]−k+1∑
i=1

k∏
j=1

∣∣∣∣∆n
i+j−1G

τn

∣∣∣∣pj

, p1, . . . , pk ≥ 0 ,

and for the joint multipower variation:(
V (G, p1

1, . . . , p
1
k)n

t , ..., V (G, pd
1, . . . , p

d
k)n

t

)
.

Define
ρ(n)

p1,...,pk
= E

[∣∣∣∆n
1G

τn

∣∣∣p1

· · ·
∣∣∣∆n

kG

τn

∣∣∣pk
]
.

We have

Theorem 19.(
Gt,

√
n
(
V (pj

1, . . . , p
j
k)n

t − ρ
(n)

pj
1,...,pj

k

t
)

1≤j≤d

)
→ (Gt, β

1/2Wt),

where W is a d-dimensional Brownian, defined in an extension of the original filtered
space, independent of G, β is a d× d-dimensional matrix given by

βij = lim
n→∞

n cov
(
VQ(pi

1, . . . , p
i
k)n

1 , VQ(pj
1, . . . , p

j
k)n

1

)
, 1 ≤ i, j ≤ d,

and (Qi)i≥1 is stationary centered discrete time Gaussian process with correlation
function ρ(j).
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