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Ambit �elds and processes
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Figure: Ambit processes
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Ambit �elds and processes

Ambit �elds

Yt (x) = µ+
Z
At (x )

g (ξ, s; t, x) σs (ξ) L (dξ,ds)

+
Z
Dt (x )

q (ξ, s; t, x) as (ξ)dξds.

Here At (x), and Dt (x) are termed ambit sets, g and q are deterministic
(matrix) functions, σ � 0 is a stochastic �eld referred to as the
intermittency or volatility, and L is a Lévy basis. Integration in the sense
of random measures, as de�ned by Rajput and Rosinski (1989)

Ambit processes
Xθ = Yt(θ) (x (θ)) .
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Ambit �elds and processes

General form

Volatility Modulated Volterra Ambit Processes (VMVAP)

Stationary regimes

To model stationary �elds and processes the damping functions g and q
are chosen to have the form

g (ξ, s; t, x) = g (x � ξ, t � s)

q (ξ, s; t, x) = q (x � ξ, t � s)
and the ambit sets are taken to be homogeneous and nonanticipative, i.e.
At (x) is of the form At (x) = A+ (x , t) where A only involves negative
time coordinates, and similarly for Dt (x).
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Turbulence

Stylized features of isotropic, homogeneous and steady turbulent
�ows away from boundaries

Inertial range scaling relations

� scaling of structure functions (K41, K62)
� scaling exponents
� role of skewness
� scaling of the integrated energy dissipation (K62, RQV)
� scaling of energy dissipation correlators
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Turbulence

Second order structure function S2 (δ)

S2 (δ) = const � E fRQV (δ)g

RQV (δ) =
bt/δc

∑
j=1

�
∆nj Y

�2
where

∆nj Y = Yjδ � Y(j�1)δ
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Turbulence
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Figure: S2 Brookhaven data
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Turbulence
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Log-log-plot of the second order structure function
for the Brookhaven data set. Red line has slope 2�3.

Figure: S2 Brookhaven data
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Turbulence

Dissipation scales:

� deviations from inertial range scaling
� small scale di¤usion

Variation measures:

� delta RVR
� diamond RVR
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Turbulence

Densities of velocity increments:

� evolution across scales
� heavy tails
� NIG representation
� universality
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Turbulence

Velocity �eld

Yt (x) = µ+
Z
At (x )

g (t � s, ξ � x) σs (ξ)W (dξ,ds)

+
Z
Dt (x )

q (t � s, ξ � x) σ2s (ξ)dξds.

Energy dissipation �eld:

σ2t (x) =
Z
Ct (x )

h (t � s, ξ � x) L (dξ,ds)

where L is a nonnegative Lévy basis.

Intermittency �eld:

Model log σ2t (x) in the same manner. Important for scaling analysis.
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Turbulence

Turbulence background

Example of Ambit sets (for modelling intermittency �elds)
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Figure: Ambit sets

Taylor Frozen Field Hypothesis
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Turbulence

Most extensive data sets on turbulent velocities only provide the time
series of the main component of the velocity vector (i.e. the component in
the main direction of the �uid �ow) at a single location in space.

The turbulence modelling framework then particularise to the class of
BSS models (Brownian semistationary processes). We discuss this class
next, returning at the end to some discussion of the further intriguing
issues that arise when addressing tempo-spatial settings.
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BSS processes

Brownian semistationary (BSS) processes:

Yt =
Z t

�∞
g(t � s)σsW (ds) +

Z t

�∞
q(t � s)asds

where W is Brownian measure on R, σ and a are cadlag processes and g
and q are deterministic continuous memory function on R, with
g (t) = q (t) = 0 for t � 0.

When σ and a are stationary, as will be assumed throughout this talk, then
so is Y .

It is sometimes convenient to indicate the formula for Y as

Y = g � σ �W + q � a � leb.
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BSS processes

We consider the BSS processes to be the natural analogue, in stationarity
related settings, of the class BSM of Brownian semimartingales.

Yt =
Z t

0
σsdWs +

Z t

0
asds.

The BSS processes are not in general semimartingales

Example Suppose Y = g � σ �W with g (t) = tν�1e�λt .

1
2 < ν < 1 nonSM

ν = 1 SM
1 < ν < 3

2 nonSM
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BSS processes

A key object of interest is the integrated variance (IV)

σ2+t =
Z t

0
σ2sds

for any t 2 R.

We shall discuss to what extent realised multipower (in particular
quadratic) variations of Y can be used to estimate σ2+t .

Note that the relevant question here is whether a suitably normalised
version of the realised quadratic variation, and not necessarily the
realised quadratic variation itself, converges in probability.
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Multipower variation

Multipower Variations (MPV) Let X be a stochastic process in
continuous time, observed over the interval [0, t] at time points 0, δ, 2δ, ...,
where δ = 1

n for some positive integer n.

Realised multipower ∆-variations

A realised multipower ∆-variation of a stochastic process X is an object of
the type

[nt ]�k+1

∑
i=1

k

∏
j=1
j∆ni+j�1X jpj

where ∆ni X = X i
n
� X i�1

n
and p1, . . . , pk � 0.
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Multipower variation

Realised multipower �-variations

A realised multipower �-variation of a stochastic process X is an object of
the type

[nt ]�k+1

∑
i=1

k

∏
j=1
j�ni+j�1X jpj

where �ni X = Xiδ � 2X(i�1)δ + X(i�2)δ and p1, . . . , pk � 0.
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Multipower variation for BSS processes

Multipower variation for BSS processes

Now consider a BSS process

Yt =
Z t

�∞
g(t � s)σsW (ds) +

Z t

�∞
q(t � s)asds.

Let G be the Gaussian core of Y , i.e.

Gt =
Z t

�∞
g(t � s)W (ds)

and let G be the σ-algebra generated by G .
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Multipower variation for BSS processes

Key quantities

De�ne r∆
n as the autocorrelation function of the ∆-increments of G , i.e.

r∆
n (j) = cov

�∆n1G
τ∆
n
,

∆n1+jG
τ∆
n

�
and r�n as the autocorrelation function of the �-increments of G , i.e.

r�n (j) = cov
��n1G

τ�n
,
�n1+jG

τ�n

�
where �

τ∆
n

�2
= E

n
j∆n1G j2

o
and

�
τ�n
�2
= E

n
j�n1G j2

o
.
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Multipower variation for BSS processes

Let π∆
δ be the measure on R+ de�ned by

π∆
δ (A) =

R
A(g(x � δ)� g(x))2dxR ∞
0 (g(x � δ)� g(x))2dx

.

Note that π∆
δ is a probability measure on R+, and set

π̄∆
δ (x) = π∆

δ (fy : y > xg).

This measure π̄δ has a crucial in�uence on the asymptotic behaviour of
the realised multipower ∆-variations of Y .
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Multipower variation for BSS processes

Let π�δ be the measure on R+ de�ned by

π�δ (A) =

R
A(g(x � 2δ)� 2g(x � δ) + g(x))2dxR ∞
0 (g(x � 2δ)� 2g(x � δ) + g(x))2dx

.

Note that π�δ is a probability measure on R+, and set
π̄�δ (x) = π�δ (fy : y > xg).

This measure π̄�δ has a crucial in�uence on the asymptotic behaviour of
the realised multipower �-variations of Y .
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Multipower variation for BSS processes

We are interested in the probabilistic limit behaviour of the normalised
realised multipower ∆-variations

V̄∆(Y , p1, . . . , pk )nt =
1

n (τ∆
n )
p+

[nt ]�k+1

∑
i=1

k

∏
j=1
j∆ni+j�1Y jpj

and of the normalised realised multipower �-variations

V̄�(Y , p1, . . . , pk )nt =
1

n
�

τ�n
�p+ [nt ]�k+1

∑
i=1

k

∏
j=1
j�ni+j�1Y jpj
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Multipower variation for BSS processes

A basic result for determining the limit behaviour is a CLT for Gaussian
triangular arrays (this was established using Malliavin calculus).

Example of results obtained (under regularity conditions):

Joint central limit theorem for a family (V̄ (Y , pj1, . . . , pjk )
n
t )1�j�d of

multipower variations :

p
n
�
V̄∆(Y , p

j
1, . . . , pjk )

n
t � ρ

(n)

p j1,...,p
j
k

Z t

0
jσs jp

j
+ds

�
1�j�d

G�st�!
Z t

0
Z 1/2
s dBs

where B is a d-dimensional Brownian motion that is independent of Y ,
and Z is a d � d-dimensional process

Z ijs = βij jσs jp
i
++p

j
+ , 1 � i , j � d .

Feasible inference
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Key example

Key example:

g (t) = tν�1e�λt

for 0 < t < ∞ and λ > 0 and with ν > 1
2 .

This allows many explicit calculations and is a useful initial choice for the
turbulence modelling.

The upshot of the calculations is that:

the ∆-LLN holds for ν 2
� 1
2 ,
3
2

�
and that the ∆-CLT is valid provided

ν 2 ( 12 ,
5
4 ).

the �-LLN holds for ν 2
� 1
2 ,
3
2

�
and that the �-CLT is valid provided

ν 2 ( 12 ,
3
2 ).
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Realised Variation Ratio (RVR)

RVR

Let us consider the realised ∆-variation ratio (RVR) de�ned as

RVR∆
t (δ) =

π
2 V

∆(Y , 1, 1)nt
V ∆(Y , 2, 0)nt

.

Here V ∆(Y , 1, 1)nt is the bipower variation of Y

Note The RVR∆
t is calculable without a model

Ole E. Barndor¤-Nielsen () Ambit Processes 28 / 44



Realised Variation Ratio (RVR)

0.0 0.5 1.0 1.5
RVR

Histogram of the realised variation ratio
for the Brookhaven data set, first order differences

Figure: RVR Brookhaven data
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Realised Variation Ratio (RVR)

As a consequence of the law of large numbers we obtain the following
probability limit result for the realised variatio ratio:

RVR∆
t (δ)

ucp�! ψ (ρ(1))

where
ψ (ρ) =

q
1� ρ2 + ρ arcsin ρ

which equals π
2 E fjUV jg where U and V are two standard normal

variables with correlation ρ.
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Roles of ambit sets and Pii measures

Roles of ambit sets and Pii measures

Example Suppose that

g (t) = e�λt1(0,l) (t)

with λ > 0. This is a non-semimartingale case, and it can be shown that

V̄ (Y , 2)nt

P

�!
�
1+ e�2λl

��1
σ2+t �

�
1+ e2λl

��1
(σ2+t�l � σ2+�l ) 6= σ2+t .

Thus, in particular, we do not have V̄ (Y , 2)nt
P�! σ2+t .
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Roles of ambit sets and Pii measures

Pick up of information on intermittency

t

t
′

•

•

x x
′

!

" (t(θ), x(θ))

Figure: increments

ambit sets bounded; boundary curve regular; g �regular�.

Bounded versus unbounded A\ fg > 0g
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Roles of ambit sets and Pii measures

Pii measure

πδ (B) =

R
B (g(x � δ)� g(x))2dxR

Rd (g(x � δ)� g(x))2dx

Under regularity conditions, for δ ! 0

V̄∆jσ
p!
Z

R2

Z t

0
σ2x (θ)�u (t (θ)� v)m (dudv) .
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BSS and Wold-Karhunen

Wold-Karhunen representations
As a modelling framework for continuous time stationary processes the
BSS speci�cation is quite general. In fact, the continuous time
Wold-Karhunen decomposition says that any second order stationary
stochastic process, possibly complex valued, of mean 0 and continuous in
quadratic mean can be represented as

Zt =
Z t

�∞
φ (t � s)dΞs + Vt . (1)

where

the deterministic function φ is an, in general complex, deterministic
square integrable function

the process Ξ has orthogonal increments with E
n
jdΞt j2

o
= vdt for

some constant v > 0

the process V is nonregular (i.e. its future values can be predicted, in
the L2 sense, by linear operations on past values without error).
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BSS and Wold-Karhunen

Stationary ambit processes: Xt = Yt (x (t)) where

Yt (x) = µ+
Z
At (x )

g (t � s, ξ � x) σs (ξ)W (dξ,ds)

+
Z
Dt (x )

q (t � s, ξ � x) σ2s (ξ)dξds.

So there exists a φ such that

Xt =
Z t

�∞
φ (t � s)dΞs + Vt .

What is φ? and Ξ?
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BSS and Wold-Karhunen

Example Fractional Gaussian Ornstein-Uhlenbeck process

Yt =
Z t

�∞
e�λ(t�s)dBHs

=
Z t

�∞
φH (t � s)dBs

where
φH (t � s) =?

Ole E. Barndor¤-Nielsen () Ambit Processes 36 / 44



Spots and Forwards in Energy Markets

Energy Markets

LSS processes

Stylised facts:

Samuelson e¤ect

High correlation between neighbouring contracts near maturity
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Spots and Forwards in Energy Markets

Maturity at time T = t0 + T0. Time to maturity u.

b t0 + T0

b t0 b

b t

t = t0 + T0 − u

b σs(ξ) > 0

ξ

s

T0u

Figure: spot/forward
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Stochastic Calculus?

To what extent can one create a stochastic calculus for (stationary) ambit
processes?

"Stochastic Di¤erentials"?

"Ito Algebra"?

.....
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Stochastic Calculus?

Yt =
Z t

t�l
e�λ(t�s)σsW (ds)

= Xt � e�λlXt�l

where

Xt =
Z t

�∞
e�λ(t�s)σsW (ds) .
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Stochastic Calculus?

"dYt" = dXt � e�λldXt�l
= σtW (dt)� λXtdt � e�λlσt�lW (d (t � l)) + λe�λlXt�ldt

so

("dYt")
2 =

�
σ2t + e

�2λlσ2t�l

�
dt

= "d [Y ]t ".
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Stochastic Calculus?

Alignment

Figure: Aligned
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Stochastic Calculus?

Figure: Nonaligned
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Stochastic Calculus?

.
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