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Ambit Processes, Non-Semimartingales and Applications
The Ornstein-Uhlenbeck process

@ Suppose we are given a free particle immersed in a liquid with velocity v; and
mass m. Then the physical description of the particles motion is described by the
Langevin equation (see Langevin (1908))

th g
m— = —(Vt + N;.
it ¢Vt + Nt

where ( is the friction constant and N is a fluctuation force.
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The Ornstein-Uhlenbeck process

@ Suppose we are given a free particle immersed in a liquid with velocity v; and
mass m. Then the physical description of the particles motion is described by the
Langevin equation (see Langevin (1908))

th g
m— = —(Vt + N;.
it ¢Vt + Nt

where ( is the friction constant and N is a fluctuation force.

@ Uhlenbeck and Ornstein (1930) imposed the assumption that N is a white noise,
i.e., the formal derivative of a Wiener process N. Hence they arrived with the
equation:

dvi = — (¢/m)ve dt + (1/m) dN;
that is,

L 1
Vt:Vo—S/ Vs ds + —Ng, teR,
m Jo m

which today is known as the Ornstein-Uhlenbeck process.

@ In this talk we will be concerned with the situation where the noise N has memory,
i.e., dependent increments.
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guasi Ornstein-Uhlenbeck processes (QOUS)

@ Let A > 0and N = (N;)ier be a measurable process with stationary increments
and Ng = 0; that is, (w, t) — N;(w) is measurable and for all s € R,

D
(Nt — No)ter = (Nt+s — Ns)teRr-

@ By a quasi Ornstein-Uhlenbeck process (QOU) we mean a stationary solution
X = (Xt)ter to the Langevin equation

dX; = —AX; dt + dN;,

that is, X is a stationary process such that for all t,u € R with u < t we have that

ot
Xt—xU:—A/ deS-‘rNt—Nu.

u
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z
The Lévy case

Recall the following classical result:

Theorem (Wolfe (1982) and Sato and Yamazato (1983))

Assume that N is a Lévy process. Then, there exists a QOU process X driven by N if
and only if E[log™|N¢|] < oo for all t € R. In this case the solution is unique in law and

given by

xtf/ Alt=9) gNs, t € R. 1)

@ Note that, a random variable is selfdecomposable if and only if it is of the form (1).
@ When N has dependent increments, X is, in general, not Markovian.
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The linear fractional stable motion

@ The linear fractional stable motion (LFSM) of indexes « € (0,2] and H € (0,1) is
a important example of a N; here

't
N = / (€=~ (=9)I ]z, teR

and Z = (Z;)ier is a symmetric a-stable Lévy process.

@ The QOU process driven by a fractional Brownian motion is often called a
fractional Ornstein-Uhlenbeck process; see Cheriditio, Kawaguchi and
Maejima (2003).

@ For the results on the case where N is a LFSM with « € (1, 2), see Maejima and
Yamamoto (2003).
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Existence and unigueness of QOUs

A stochastic process Z = (Z;)iecr is said to have finite p-moments if E[|Z;|P] < oo for
all't € R.

Theorem

Assume that N has finite first-moments. Then there exists a unique in law QOU
process X driven by N, and it is given by

t
Xt = Ny — )\eikt/ e/\SNs ds, teR.
—oo

Furthermore, if N has finite p-moments for some p > 1, then X has finite p-moments
and is continuous in LP.

@ Note that when N is a LFSM with indexes o € (1,2] and H € (0, 1), N has finite
first-moments and hence by the above theorem there exists an unique in law QOU
process X driven by N.

@ WhenH € (0,1/a) Maejima and Yamamoto (2003) conjectured that there does
not exists a QOU process driven by N, due to the fact that the sample paths of N
are unbounded on each non-empty interval with probability one.

HETTHIELE cENTRE

Andreas Basse-O'Connor Quasi Ornstein-Uhlenbeck Processes



Ambit Processes, Non-Semimartingales and Applications
Continuity result

Let p > 0 and assume that N has finite p-moments. Then, N is continuous in LP and
when p > 1 there exists a, 8 € Ry such that |[N¢||p < o+ S|t| for all t € R.

@ The proof relies on an application of the Steinhaus lemma borrowed from Surgailis
et al. (1998) together with an extension of a result by Cohn (1972).

Q In fact, we show the above result not only in LP(2, F, P), but in all modular spaces
L¢(E, &, u) where (E, &, 1) is a o-finite measure space and ¢: R — R is a
symmetric continuous function, which is increasing on R+ and ¢(0) = 0. Note
that for ¢(x) = |x|P we have L?(E, &, u) = LP(E, &, ).
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Proof of the existence

The existence of the pathwise Lebesgue integral [ioo e*SNs ds follows from the above
lemma since

t t t
E[/ eA5|N5\ds] g/ eASE[\Ns|]ds§/ e*(a + Bls|) ds < oo.

—oo
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Proof of the existence

The existence of the pathwise Lebesgue integral [ioo e*SNs ds follows from the above
lemma since

t t t
E[/ eA5|N5\ds] g/ eASE[\Ns|]ds§/ e*(a + Bls|) ds < oo.

Let X = (Xt)ier be defined by
t
Xt = Ny — Ae*“/ e’Nsds, teR.

By use of partial integration it follows that X satisfies dX; = —AX; dt + dN;.
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Proof of the existence

The existence of the pathwise Lebesgue integral [ioo e*SNs ds follows from the above
lemma since

t t t
E[/ eA5|N5\ds] g/ eASE[\Ns|]ds§/ e*(a + Bls|) ds < oo.

—oo

Let X = (Xt)ier be defined by

t
X = N; — Ae*“/ e*SNs ds, t € R.

—0o0
By use of partial integration it follows that X satisfies dX; = —AX; dt 4+ dN;. Moreover
by substitution we have that
-0
= [ (N Ness) . @
J —oo

Using the L1-continuity of N from the above lemma it follows that the integral (2) is a
limit of Riemann sums in L, which together with the stationary increments of N implies

that X is stationary.

HITTHIELE CENTRE

Andreas Basse-O’Connor Quasi Ornstein-Uhlenbeck Processes




Ambit Processes, Non-Semimartingales and Applications
Mean and variance

Assume that N has finite second-moments and let X be the corresponding QOU
process. Moreover, let Vi (t) = Var(N;) for t € R, denote the variance function of N.
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Mean and variance

Assume that N has finite second-moments and let X be the corresponding QOU
process. Moreover, let Vi (t) = Var(N;) for t € R, denote the variance function of N.

E[Xo] =

S
Y

2 o —As
and Var(Xg) = X/ e "*VWy(s)ds.
0

For example when Ny = ut + B! and B" is a fBm of index H € (0, 1), we have
W (t) = t2H for t > 0 and hence

o2l (1 + 2H)

E[Xo]:§ and  Var(Xo) = 72 o
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Asymptotic behavior of the autocovariance function

We will write f(t) ~ g(t) fort — 0 (or co), when f(t)/g(t) — 1 fort — 0 (or co). Let

Rx(t) = Cov(X;,Xo) ~ and  Rx(t) = Rx(0) — Rx(t) = %E[(Xt —Xo)?]-

Assume that N has finite second-moments and let X be the QOU process driven by N.

@ Assume for t — oo that V{{(t) = O(e(*/t) and e=*t = o(V{;(t)) and
V{(t) = o(V4(t)). Then for t — co we have

1
Ry (t) ~ ﬁvll\/l ().

@ Assume that for t — 0 we have t> = o(Vy(t)). Then for t — 0 we have
Rx (1) ~ 3 (1)
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Asymptotic behavior of the autocovariance function

We will write f(t) ~ g(t) fort — 0 (or co), when f(t)/g(t) — 1 fort — 0 (or co). Let

Rx(t) = Cov(X;,Xo) ~ and  Rx(t) = Rx(0) — Rx(t) = %E[(Xt —Xo)?]-

Assume that N has finite second-moments and let X be the QOU process driven by N.

@ Assume for t — oo that V{{(t) = O(e(*/t) and e=*t = o(V{;(t)) and
V{(t) = o(V4(t)). Then for t — co we have

1
Ry (t) ~ ﬁvll\/l ().

@ Assume that for t — 0 we have t> = o(Vy(t)). Then for t — 0 we have
Rx (1) ~ 3 (1)

@ Recall that a stationary process Z = (Z;)icr is said to have long range
dependence of order « € (0, 1) if its autocovariance function Ry (t) is regularly
varying of index —a fort — oo.

@ Thus, long range dependence of a QOU process X is the same as that V{(t) is
regularly varying of exponent 8 € (—1,0) fort — oo.
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Asymptotic behavior of the autocovariance function

We will write f(t) ~ g(t) fort — 0 (or co), when f(t)/g(t) — 1 fort — 0 (or co). Let

Rx(t) = Cov(X;,Xo) ~ and  Rx(t) = Rx(0) — Rx(t) = %E[(Xt —Xo)?]-

Assume that N has finite second-moments and let X be the QOU process driven by N.
@ Assume for t — oo that V{{(t) = O(e(*/t) and e=*t = o(V{;(t)) and
V{(t) = o(V4(t)). Then for t — co we have

1
Ry (t) ~ ﬁvll\/l ().

@ Assume that for t — 0 we have t> = o(Vy(t)). Then for t — 0 we have
Rx (1) ~ 3 (1)

When N is a fBm of index H € (0, 1) we have Vy(t) = t?" and hence
% (t) = 2H(2H — 1)t®H =2 for t > 0, which shows that for H # 1/2 and t — oo we

have H(2H — 1

Ry (1) ~ (= D) en2 ®)

The asymptotic behavior (3) in the case of a fBm is also obtained in

Cheridito, Kawaguchi and Maejima (2003). Recall that for H = 1/2,

Rx (1) = e~ /(2)).
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Moving averages

Let us consider the case where N = (N;)ie R is a pseudo moving average (PMA) of the

form
Nt:/ [f(t —s) — f(—s)] dZs, teR,
R

where Z = (Z;)ier is a centered Lévy process and f : R — R is a measurable
function satisfying

//(|x(f(t—s)—f(—s))\2A\x(f(t—s)—f(—s))|)u(dx)ds<oo.
JRJR

From a result by Cohn (1972) we may choose a measurable modification of N.
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Moving averages

Let us consider the case where N = (N;)ie R is a pseudo moving average (PMA) of the
form

N; = /]R [f(t —s) — f(—s)] dZs, teR,

where Z = (Z;)ier is a centered Lévy process and f : R — R is a measurable
function satisfying

/ / (Ix(t(t — )~ F(=S)[2 A [x(f(t —5) — F(=5)]) v(c) ds < oo.
JRJR
From a result by Cohn (1972) we may choose a measurable modification of N.

Theorem

There exists a unique in law QOU process driven by N, and it is a moving average of
the form

th/ ’l[)f(t—S)dZs, teR,
R

where

wr(t) = (f(t) — e M /t e st(s) ds), teR.

oo imicic CENTRE
Examples include the case where N is the LFSM with o € (1,2] and H €.(0, 1).
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Stochastic Fubini

Let A be a centered ID random measure on (S, S) where S is a non-empty space and
S is a o-finite §-ring on S. Let T be a separable and complete metric space, i be a
o-finite measure on T and f: T x S — R be a measurable function satisfying

/T 16, )l u(clt) < oo,
where fory € R and s € S we have
6(y,5) = y2o?(s) + /R(\uwzl‘uy\sw(zwuw—1)1‘uy\>1) v(du,s),

and || - || is the corresponding Musielak-Orlicz norm on L(S, o(S), m).

Theorem (Stochastic Fubini)

All of the below integrals exist and we have

/S(/Tf(t,s)p(dt)>A(ds):/T (/Sf(t,s)/\(ds)>y(dt).

The above theorem relies on an inequality by Marcus and Rosinski (2003).
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Asymptotic behavior of the autocovariance function

Consider a moving average X = (Xi)ier of the form

xt:/t Pt —s)dZs, teR. 4

Proposition

Let X be given by (4) and assume that ¢ (t) ~ ct® fort — co.
@ Fora € (—1,—3) we have for t — oo that Ry (t) ~ (c2ka)t29F1,

® For o € (—o0, —1) we have for t — oo that Ry (t) ~ (¢ [5° ¥(s) ds)t*,
provided [ t(s) ds # 0.
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Asymptotic behavior of the autocovariance function

Consider a moving average X = (Xi)ier of the form

xt:/t Yt —s)dZs, teR. 4

Proposition

Let X be given by (4) and assume that ¢ (t) ~ ct® fort — co.
@ Fora € (—1,—3) we have for t — oo that Ry (t) ~ (c2ka)t29F1,

® For o € (—o0, —1) we have for t — oo that Ry (t) ~ (¢ [5° ¥(s) ds)t*,
provided [ (s) ds # 0.

Now let N be a PMA of the form N; = fioo(f(t —s) —f(—s))dZs and let X be the
QOU process driven by N.

Proposition

Leta € (—1,—3) and assume that f € C*((3, 00); R) with f/(t) ~ ct®.

2
Then for t — oo we have Ry (t) ~ (%)tz‘”l.
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Stability of the autocovariance function

For simplicity let us consider the case where N if a FBM of index H € (0,1) \ {1/2}.
Let X be the QOU process driven by N, that is,

For each bounded function f: R — R with compact support let
t
4 :/ f(t—s)dzs and X/ =X +Y/.
—00

Note that Ry« (t) = O for t large.

Corollary

For some c,, ¢y, c3 # 0 we have
@ ForH € (0, %) and if [ f(s)ds # 0, then for t — oo we have

Rxf (t) ~ C2RX (t)tl/ziH ~ CltH73/2.

@ ForH € (3,1), then for t — co we have

Ry (t) ~ Ry (t) ~ cat?" =2, ]
i () ~ Rx (t) ~ c3 e
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