Quasi Ornstein-Uhlenbeck Processes

Andreas Basse-O'Connor joint with Ole E. Barndorff-Nielsen

Thiele Centre, University of Aarhus, Denmark.

Ambit Processes, Non-Semimartingales and Applications Sandbjerg Estate, Denmark January 24–28, 2010

Andreas Basse-O'Connor Quasi Ornstein-Uhlenbeck Processes

THIFLE CENTRE

The Ornstein-Uhlenbeck process

 Suppose we are given a free particle immersed in a liquid with velocity v_t and mass m. Then the physical description of the particles motion is described by the Langevin equation (see Langevin (1908))

$$m\frac{dv_t}{dt} = -\zeta v_t + \dot{N}_t.$$

where ζ is the friction constant and \dot{N}_t is a fluctuation force.

CENTRE

The Ornstein-Uhlenbeck process

 Suppose we are given a free particle immersed in a liquid with velocity v_t and mass m. Then the physical description of the particles motion is described by the Langevin equation (see Langevin (1908))

$$m\frac{dv_t}{dt} = -\zeta v_t + \dot{N}_t.$$

where ζ is the friction constant and \dot{N}_t is a fluctuation force.

• Uhlenbeck and Ornstein (1930) imposed the assumption that \dot{N} is a white noise, i.e., the formal derivative of a Wiener process *N*. Hence they arrived with the equation:

$$\mathrm{d} v_t = -(\zeta/m) v_t \, \mathrm{d} t + (1/m) \, \mathrm{d} N_t$$

that is,

$$v_t = v_0 - \frac{\zeta}{m} \int_0^t v_s \, \mathrm{d}s + \frac{1}{m} N_t, \qquad t \in \mathbb{R},$$

which today is known as the Ornstein-Uhlenbeck process.

 In this talk we will be concerned with the situation where the noise N has memory, i.e., dependent increments.

quasi Ornstein-Uhlenbeck processes (QOUs)

 Let λ > 0 and N = (N_t)_{t∈ℝ} be a measurable process with stationary increments and N₀ = 0; that is, (ω, t) → N_t(ω) is measurable and for all s ∈ ℝ,

$$(N_t - N_0)_{t \in \mathbb{R}} \stackrel{\mathcal{D}}{=} (N_{t+s} - N_s)_{t \in \mathbb{R}}.$$

• By a quasi Ornstein-Uhlenbeck process (QOU) we mean a stationary solution $X = (X_t)_{t \in \mathbb{R}}$ to the Langevin equation

$$\mathrm{d}X_t = -\lambda X_t \,\mathrm{d}t + \mathrm{d}N_t,$$

that is, X is a stationary process such that for all $t, u \in \mathbb{R}$ with u < t we have that

$$X_t - X_u = -\lambda \int_u^t X_s \,\mathrm{d}s + N_t - N_u.$$

The Lévy case

Recall the following classical result:

Theorem (Wolfe (1982) and Sato and Yamazato (1983))

Assume that N is a Lévy process. Then, there exists a QOU process X driven by N if and only if $E[\log^+|N_t|] < \infty$ for all $t \in \mathbb{R}$. In this case the solution is unique in law and given by

$$X_t = \int_{-\infty}^t e^{-\lambda(t-s)} \, \mathrm{d}N_s, \qquad t \in \mathbb{R}.$$
(1)

- Note that, a random variable is selfdecomposable if and only if it is of the form (1).
- When *N* has dependent increments, *X* is, in general, not Markovian.

The linear fractional stable motion

 The linear fractional stable motion (LFSM) of indexes α ∈ (0, 2] and H ∈ (0, 1) is a important example of a N; here

$$N_t = \int_{-\infty}^t \left[(t-s)_+^{H-1/lpha} - (-s)_+^{H-1/lpha}
ight] \mathrm{d}Z_s, \qquad t \in \mathbb{R}^d$$

and $Z = (Z_t)_{t \in \mathbb{R}}$ is a symmetric α -stable Lévy process.

- The QOU process driven by a fractional Brownian motion is often called a fractional Ornstein-Uhlenbeck process; see Cheriditio, Kawaguchi and Maejima (2003).
- For the results on the case where *N* is a LFSM with $\alpha \in (1, 2)$, see Maejima and Yamamoto (2003).

Existence and uniqueness of QOUs

A stochastic process $Z = (Z_t)_{t \in \mathbb{R}}$ is said to have finite *p*-moments if $\mathbb{E}[|Z_t|^p] < \infty$ for all $t \in \mathbb{R}$.

Theorem

Assume that N has finite first-moments. Then there exists a unique in law QOU process X driven by N, and it is given by

$$X_t = N_t - \lambda e^{-\lambda t} \int_{-\infty}^t e^{\lambda s} N_s \, \mathrm{d}s, \qquad t \in \mathbb{R}.$$

Furthermore, if N has finite p-moments for some $p \ge 1$, then X has finite p-moments and is continuous in L^p .

- Note that when N is a LFSM with indexes α ∈ (1, 2] and H ∈ (0, 1), N has finite first-moments and hence by the above theorem there exists an unique in law QOU process X driven by N.
- When *H* ∈ (0, 1/α) Maejima and Yamamoto (2003) conjectured that there does not exists a QOU process driven by *N*, due to the fact that the sample paths of *N* are unbounded on each non-empty interval with probability one.

Continuity result

Lemma

Let $p \ge 0$ and assume that N has finite p-moments. Then, N is continuous in L^p and when $p \ge 1$ there exists $\alpha, \beta \in \mathbb{R}_+$ such that $||N_t||_p \le \alpha + \beta |t|$ for all $t \in \mathbb{R}$.

The proof relies on an application of the Steinhaus lemma borrowed from Surgailis et al. (1998) together with an extension of a result by Cohn (1972).

(a) In fact, we show the above result not only in $L^{p}(\Omega, \mathcal{F}, P)$, but in all modular spaces $L^{\phi}(E, \mathcal{E}, \mu)$ where (E, \mathcal{E}, μ) is a σ -finite measure space and $\phi \colon \mathbb{R} \to \mathbb{R}_{+}$ is a symmetric continuous function, which is increasing on \mathbb{R}_{+} and $\phi(0) = 0$. Note that for $\phi(\mathbf{x}) = |\mathbf{x}|^{p}$ we have $L^{\phi}(E, \mathcal{E}, \mu) = L^{p}(E, \mathcal{E}, \mu)$.

Proof of the existence

The existence of the pathwise Lebesgue integral $\int_{-\infty}^t e^{\lambda s} N_s\,\mathrm{d}s$ follows from the above lemma since

$$\mathrm{E}\Big[\int_{-\infty}^{t} \mathrm{e}^{\lambda \mathsf{s}} |\mathsf{N}_{\mathsf{s}}| \,\mathrm{d}\mathsf{s}\Big] \leq \int_{-\infty}^{t} \mathrm{e}^{\lambda \mathsf{s}} \mathrm{E}[|\mathsf{N}_{\mathsf{s}}|] \,\mathrm{d}\mathsf{s} \leq \int_{-\infty}^{t} \mathrm{e}^{\lambda \mathsf{s}} (\alpha + \beta |\mathsf{s}|) \,\mathrm{d}\mathsf{s} < \infty.$$

THIELE CENTRE

<ロト < 回 > < 回 > < 回 > < 回 > < 回 < □ </p>

Proof of the existence

The existence of the pathwise Lebesgue integral $\int_{-\infty}^t e^{\lambda s} N_s \, \mathrm{d}s$ follows from the above lemma since

$$\mathrm{E}\Big[\int_{-\infty}^{t} \mathrm{e}^{\lambda s} |N_{s}| \,\mathrm{d}s\Big] \leq \int_{-\infty}^{t} \mathrm{e}^{\lambda s} \mathrm{E}[|N_{s}|] \,\mathrm{d}s \leq \int_{-\infty}^{t} \mathrm{e}^{\lambda s} (\alpha + \beta |s|) \,\mathrm{d}s < \infty.$$

Let $X = (X_t)_{t \in \mathbb{R}}$ be defined by

$$X_t = N_t - \lambda e^{-\lambda t} \int_{-\infty}^t e^{\lambda s} N_s \, \mathrm{d}s, \qquad t \in \mathbb{R}.$$

By use of partial integration it follows that X satisfies $dX_t = -\lambda X_t dt + dN_t$.

Proof of the existence

The existence of the pathwise Lebesgue integral $\int_{-\infty}^t e^{\lambda s} N_s\,\mathrm{d}s$ follows from the above lemma since

$$\mathbb{E}\Big[\int_{-\infty}^{t} e^{\lambda s} |N_{s}| \, \mathrm{d}s\Big] \leq \int_{-\infty}^{t} e^{\lambda s} \mathbb{E}[|N_{s}|] \, \mathrm{d}s \leq \int_{-\infty}^{t} e^{\lambda s} (\alpha + \beta |s|) \, \mathrm{d}s < \infty.$$

Let $X = (X_t)_{t \in \mathbb{R}}$ be defined by

$$X_t = N_t - \lambda e^{-\lambda t} \int_{-\infty}^t e^{\lambda s} N_s \, \mathrm{d}s, \qquad t \in \mathbb{R}.$$

By use of partial integration it follows that X satisfies $dX_t = -\lambda X_t dt + dN_t$. Moreover by substitution we have that

$$X_t = \lambda \int_{-\infty}^0 e^{\lambda s} (N_t - N_{t+s}) \,\mathrm{d}s. \tag{2}$$

Using the L^1 -continuity of *N* from the above lemma it follows that the integral (2) is a limit of Riemann sums in L^1 , which together with the stationary increments of *N* implies that *X* is stationary.

Mean and variance

Assume that *N* has finite second-moments and let *X* be the corresponding QOU process. Moreover, let $V_N(t) = Var(N_t)$ for $t \in \mathbb{R}$, denote the variance function of *N*.

THIELE CENTRE

Mean and variance

Assume that *N* has finite second-moments and let *X* be the corresponding QOU process. Moreover, let $V_N(t) = Var(N_t)$ for $t \in \mathbb{R}$, denote the variance function of *N*.

Theorem

$$\operatorname{E}[X_0] = rac{\operatorname{E}[N_1]}{\lambda}$$
 and $\operatorname{Var}(X_0) = rac{2}{\lambda} \int_0^\infty e^{-\lambda s} \operatorname{V}_N(s) \, \mathrm{d}s.$

For example when $N_t = \mu t + \sigma B_t^H$ and B^H is a fBm of index $H \in (0, 1)$, we have $V_N(t) = t^{2H}$ for t > 0 and hence

$$\operatorname{E}[X_0] = rac{\mu}{\lambda}$$
 and $\operatorname{Var}(X_0) = rac{\sigma^2 \Gamma(1+2H)}{2\lambda^{2H}}.$

→ ∃ →

We will write $f(t) \sim g(t)$ for $t \to 0$ (or ∞), when $f(t)/g(t) \to 1$ for $t \to 0$ (or ∞). Let $R_X(t) = \text{Cov}(X_t, X_0)$ and $\overline{R}_X(t) = R_X(0) - R_X(t) = \frac{1}{2}\text{E}[(X_t - X_0)^2].$

Theorem

Assume that N has finite second-moments and let X be the QOU process driven by N.

• Assume for $t \to \infty$ that $V'_N(t) = O(e^{(\lambda/2)t})$ and $e^{-\lambda t} = o(V''_N(t))$ and $V''_N(t) = o(V''_N(t))$. Then for $t \to \infty$ we have

$$\mathbf{R}_X(t) \sim \frac{1}{2\lambda^2} \mathbf{V}_N''(t).$$

• Assume that for $t \to 0$ we have $t^2 = o(V_N(t))$. Then for $t \to 0$ we have $\overline{R}_X(t) \sim \frac{1}{2}V_N(t)$.

We will write $f(t) \sim g(t)$ for $t \to 0$ (or ∞), when $f(t)/g(t) \to 1$ for $t \to 0$ (or ∞). Let $R_X(t) = \text{Cov}(X_t, X_0)$ and $\overline{R}_X(t) = R_X(0) - R_X(t) = \frac{1}{2}\text{E}[(X_t - X_0)^2].$

Theorem

Assume that N has finite second-moments and let X be the QOU process driven by N.

• Assume for $t \to \infty$ that $V'_{h}(t) = O(e^{(\lambda/2)t})$ and $e^{-\lambda t} = o(V''_{h}(t))$ and $V''_{h}(t) = o(V''_{h}(t))$. Then for $t \to \infty$ we have

$$\mathbf{R}_X(t) \sim \frac{1}{2\lambda^2} \mathbf{V}_N''(t).$$

- Assume that for $t \to 0$ we have $t^2 = o(V_N(t))$. Then for $t \to 0$ we have $\overline{R}_X(t) \sim \frac{1}{2}V_N(t)$.
- Recall that a stationary process Z = (Z_t)_{t∈ℝ} is said to have *long range* dependence of order α ∈ (0, 1) if its autocovariance function R_Z(t) is regularly varying of index −α for t → ∞.
- Thus, long range dependence of a QOU process X is the same as that $V''_N(t)$ is regularly varying of exponent $\beta \in (-1, 0)$ for $t \to \infty$.

We will write $f(t) \sim g(t)$ for $t \to 0$ (or ∞), when $f(t)/g(t) \to 1$ for $t \to 0$ (or ∞). Let $R_X(t) = \text{Cov}(X_t, X_0)$ and $\overline{R}_X(t) = R_X(0) - R_X(t) = \frac{1}{2}\text{E}[(X_t - X_0)^2].$

Theorem

Assume that N has finite second-moments and let X be the QOU process driven by N.

• Assume for $t \to \infty$ that $V'_N(t) = O(e^{(\lambda/2)t})$ and $e^{-\lambda t} = o(V''_N(t))$ and $V''_N(t) = o(V''_N(t))$. Then for $t \to \infty$ we have

$$\mathbf{R}_X(t) \sim \frac{1}{2\lambda^2} \mathbf{V}_N''(t).$$

• Assume that for $t \to 0$ we have $t^2 = o(V_N(t))$. Then for $t \to 0$ we have $\overline{R}_X(t) \sim \frac{1}{2}V_N(t)$.

When *N* is a fBm of index $H \in (0, 1)$ we have $V_N(t) = t^{2H}$ and hence $V'_N(t) = 2H(2H-1)t^{2H-2}$ for t > 0, which shows that for $H \neq 1/2$ and $t \to \infty$ we have

$$\mathbf{R}_{X}(t) \sim \left(\frac{H(2H-1)}{\lambda^{2}}\right) t^{2H-2}.$$
(3)

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

The asymptotic behavior (3) in the case of a fBm is also obtained in Cheridito, Kawaguchi and Maejima (2003). Recall that for H = 1/2, $R_X(t) = e^{-\lambda t}/(2\lambda)$.

Moving averages

Let us consider the case where $N = (N_t)_{t \in \mathbb{R}}$ is a pseudo moving average (PMA) of the form

$$N_t = \int_{\mathbb{R}} \left[f(t-s) - f(-s) \right] \mathrm{d}Z_s, \qquad t \in \mathbb{R},$$

where $Z = (Z_t)_{t \in \mathbb{R}}$ is a centered Lévy process and $f \colon \mathbb{R} \to \mathbb{R}$ is a measurable function satisfying

$$\int_{\mathbb{R}}\int_{\mathbb{R}}\left(\left|x(f(t-s)-f(-s))\right|^2\wedge\left|x(f(t-s)-f(-s))\right|\right)\nu(\mathrm{d}x)\,\mathrm{d}s<\infty.$$

From a result by Cohn (1972) we may choose a measurable modification of N.

→ Ξ → < Ξ</p>

Moving averages

Let us consider the case where $N = (N_t)_{t \in \mathbb{R}}$ is a pseudo moving average (PMA) of the form

$$N_t = \int_{\mathbb{R}} \left[f(t-s) - f(-s) \right] \mathrm{d}Z_s, \qquad t \in \mathbb{R},$$

where $Z = (Z_t)_{t \in \mathbb{R}}$ is a centered Lévy process and $f \colon \mathbb{R} \to \mathbb{R}$ is a measurable function satisfying

$$\int_{\mathbb{R}}\int_{\mathbb{R}}\left(\left|\mathsf{X}(f(t-s)-f(-s))\right|^2\wedge\left|\mathsf{X}(f(t-s)-f(-s))\right|\right)\nu(\mathrm{d} x)\,\mathrm{d} s<\infty.$$

From a result by Cohn (1972) we may choose a measurable modification of N.

Theorem

There exists a unique in law QOU process driven by N, and it is a moving average of the form

$$X_t = \int_{\mathbb{R}} \psi_f(t-s) \, \mathrm{d}Z_s, \qquad t \in \mathbb{R},$$

where

$$\psi_f(t) = \left(f(t) - \lambda e^{-\lambda t} \int_{-\infty}^t e^{\lambda s} f(s) \, \mathrm{d}s\right), \qquad t \in \mathbb{R}.$$

Examples include the case where N is the LFSM with $\alpha \in (1, 2]$ and $H \in (0, 1)$.

CENTRE

Stochastic Fubini

Let Λ be a centered ID random measure on (S, S) where S is a non-empty space and S is a σ -finite δ -ring on S. Let T be a separable and complete metric space, μ be a σ -finite measure on T and $f: T \times S \to \mathbb{R}$ be a measurable function satisfying

$$\int_{\mathcal{T}} \|f(t,\cdot)\|_{\phi} \, \mu(\mathrm{d} t) < \infty,$$

where for $y \in \mathbb{R}$ and $s \in S$ we have

$$\phi(\mathbf{y}, \mathbf{s}) = \mathbf{y}^2 \sigma^2(\mathbf{s}) + \int_{\mathbb{R}} \left(|u\mathbf{y}|^2 \mathbf{1}_{|u\mathbf{y}| \le 1} + (2|u\mathbf{y}| - 1)\mathbf{1}_{|u\mathbf{y}| > 1} \right) \nu(\mathrm{d} u, \mathbf{s}),$$

and $\|\cdot\|_{\phi}$ is the corresponding Musielak-Orlicz norm on $L^{\phi}(S, \sigma(S), m)$.

Theorem (Stochastic Fubini)

All of the below integrals exist and we have

$$\int_{\mathcal{S}} \Big(\int_{T} f(t, \mathbf{s}) \, \mu(\mathrm{d}t) \Big) \Lambda(\mathrm{d}\mathbf{s}) = \int_{T} \Big(\int_{\mathcal{S}} f(t, \mathbf{s}) \, \Lambda(\mathrm{d}\mathbf{s}) \Big) \mu(\mathrm{d}t).$$

The above theorem relies on an inequality by Marcus and Rosiński (2003).

Consider a moving average $X = (X_t)_{t \in \mathbb{R}}$ of the form

$$X_t = \int_{-\infty}^t \psi(t-s) \, \mathrm{d}Z_s, \qquad t \in \mathbb{R}.$$
(4)

Proposition

Let X be given by (4) and assume that $\psi(t) \sim ct^{\alpha}$ for $t \to \infty$.

- For $\alpha \in (-1, -\frac{1}{2})$ we have for $t \to \infty$ that $R_X(t) \sim (c^2 k_\alpha) t^{2\alpha+1}$.
- For $\alpha \in (-\infty, -1)$ we have for $t \to \infty$ that $R_X(t) \sim (c \int_0^\infty \psi(s) ds) t^{\alpha}$, provided $\int_0^\infty \psi(s) ds \neq 0$.

- **→ → →**

Consider a moving average $X = (X_t)_{t \in \mathbb{R}}$ of the form

$$X_t = \int_{-\infty}^t \psi(t-s) \, \mathrm{d}Z_s, \qquad t \in \mathbb{R}.$$
(4)

THIFLE CENTRE

< D > < P > < E > <</pre>

Proposition

Let X be given by (4) and assume that $\psi(t) \sim ct^{\alpha}$ for $t \to \infty$.

- For $\alpha \in (-1, -\frac{1}{2})$ we have for $t \to \infty$ that $R_X(t) \sim (c^2 k_\alpha) t^{2\alpha+1}$.
- For $\alpha \in (-\infty, -1)$ we have for $t \to \infty$ that $R_X(t) \sim (c \int_0^\infty \psi(s) ds) t^{\alpha}$, provided $\int_0^\infty \psi(s) ds \neq 0$.

Now let *N* be a PMA of the form $N_t = \int_{-\infty}^t (f(t-s) - f(-s)) dZ_s$ and let *X* be the QOU process driven by *N*.

Proposition

Let
$$\alpha \in (-1, -\frac{1}{2})$$
 and assume that $f \in C^1((\beta, \infty); \mathbb{R})$ with $f'(t) \sim ct^{\alpha}$.
Then for $t \to \infty$ we have $\mathbb{R}_X(t) \sim (\frac{c^2 k_{\alpha}}{\lambda^2})t^{2\alpha+1}$.

Stability of the autocovariance function

For simplicity let us consider the case where *N* if a FBM of index $H \in (0, 1) \setminus \{1/2\}$. Let *X* be the QOU process driven by *N*, that is,

$$X_t = \int_{-\infty}^t \psi_H(t-s) \, \mathrm{d}Z_s, \qquad \psi_H(t) = c_H(t^{H-1/2} - \lambda e^{-\lambda t} \int_0^t e^{\lambda s} s^{H-1/2} \, \mathrm{d}s).$$

For each bounded function $f \colon \mathbb{R} \to \mathbb{R}$ with compact support let

$$\mathbf{Y}_t^f = \int_{-\infty}^t f(t-s) \, \mathrm{d}\mathbf{Z}_s$$
 and $\mathbf{X}_t^f = \mathbf{X}_t + \mathbf{Y}_t^f$.

Note that $R_{Y^f}(t) = 0$ for *t* large.

Corollary

For some $c_1, c_2, c_3 \neq 0$ we have

• For $H \in (0, \frac{1}{2})$ and if $\int_0^{\infty} f(s) ds \neq 0$, then for $t \to \infty$ we have

$$R_{X^f}(t) \sim c_2 R_X(t) t^{1/2-H} \sim c_1 t^{H-3/2}$$

• For $H \in (\frac{1}{2}, 1)$, then for $t \to \infty$ we have

$$\mathbf{R}_{X^f}(t) \sim \mathbf{R}_X(t) \sim c_3 t^{2H-2}$$

FNTRF

Key references

Barndorff-Nielsen, O. E. and A. Basse-O'Connor (2009). Quasi Ornstein-Uhlenbeck processes. (Submitted). Preprint available from www.thiele.au.dk

Cheridito, P., H. Kawaguchi, and M. Maejima (2003). Fractional Ornstein-Uhlenbeck processes. *Electron. J. Probab. 8*, no. 3, 14 pp.

Maejima, M. and K. Yamamoto (2003). Long-memory stable Ornstein-Uhlenbeck processes. *Electron. J. Probab. 8*, no. 19, 18 pp.

Surgailis, D., J. Rosiński, V. Mandekar, and S. Cambanis (1998). On the mixing structure of stationary increments and self-similar $S_{\alpha}S$ processes. (Preprint).

CENTRE