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The Ornstein-Uhlenbeck process

Suppose we are given a free particle immersed in a liquid with velocity vt and
mass m. Then the physical description of the particles motion is described by the
Langevin equation (see Langevin (1908))

m
dvt

dt
= −ζvt + Ṅt .

where ζ is the friction constant and Ṅt is a fluctuation force.
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The Ornstein-Uhlenbeck process

Suppose we are given a free particle immersed in a liquid with velocity vt and
mass m. Then the physical description of the particles motion is described by the
Langevin equation (see Langevin (1908))

m
dvt

dt
= −ζvt + Ṅt .

where ζ is the friction constant and Ṅt is a fluctuation force.

Uhlenbeck and Ornstein (1930) imposed the assumption that Ṅ is a white noise,
i.e., the formal derivative of a Wiener process N. Hence they arrived with the
equation:

dvt = − (ζ/m)vt dt + (1/m) dNt

that is,

vt = v0 −
ζ

m

∫ t

0
vs ds +

1

m
Nt , t ∈ R,

which today is known as the Ornstein-Uhlenbeck process.

In this talk we will be concerned with the situation where the noise N has memory,
i.e., dependent increments.
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quasi Ornstein-Uhlenbeck processes (QOUs)

Let λ > 0 and N = (Nt )t∈R be a measurable process with stationary increments
and N0 = 0; that is, (ω, t) 7→ Nt (ω) is measurable and for all s ∈ R,

(Nt − N0)t∈R D
= (Nt+s − Ns)t∈R.

By a quasi Ornstein-Uhlenbeck process (QOU) we mean a stationary solution
X = (Xt )t∈R to the Langevin equation

dXt = −λXt dt + dNt ,

that is, X is a stationary process such that for all t, u ∈ R with u < t we have that

Xt − Xu = −λ

∫ t

u
Xs ds + Nt − Nu .
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The Lévy case

Recall the following classical result:

Theorem (Wolfe (1982) and Sato and Yamazato (1983))

Assume that N is a Lévy process. Then, there exists a QOU process X driven by N if
and only if E[log+|Nt |] < ∞ for all t ∈ R. In this case the solution is unique in law and
given by

Xt =

∫ t

−∞
e−λ(t−s) dNs , t ∈ R. (1)

Note that, a random variable is selfdecomposable if and only if it is of the form (1).

When N has dependent increments, X is, in general, not Markovian.

Andreas Basse-O’Connor Quasi Ornstein-Uhlenbeck Processes



Ambit Processes, Non-Semimartingales and Applications

The linear fractional stable motion

The linear fractional stable motion (LFSM) of indexes α ∈ (0, 2] and H ∈ (0, 1) is
a important example of a N; here

Nt =

∫ t

−∞

[

(t − s)
H−1/α
+ − (−s)

H−1/α
+

]

dZs , t ∈ R
and Z = (Zt)t∈R is a symmetric α-stable Lévy process.

The QOU process driven by a fractional Brownian motion is often called a
fractional Ornstein-Uhlenbeck process; see Cheriditio, Kawaguchi and
Maejima (2003).

For the results on the case where N is a LFSM with α ∈ (1, 2), see Maejima and
Yamamoto (2003).
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Existence and uniqueness of QOUs

A stochastic process Z = (Zt )t∈R is said to have finite p-moments if E[|Zt |
p] < ∞ for

all t ∈ R.

Theorem

Assume that N has finite first-moments. Then there exists a unique in law QOU
process X driven by N, and it is given by

Xt = Nt − λe−λt
∫ t

−∞
eλsNs ds, t ∈ R.

Furthermore, if N has finite p-moments for some p ≥ 1, then X has finite p-moments
and is continuous in Lp.

Note that when N is a LFSM with indexes α ∈ (1, 2] and H ∈ (0, 1), N has finite
first-moments and hence by the above theorem there exists an unique in law QOU
process X driven by N.

When H ∈ (0, 1/α) Maejima and Yamamoto (2003) conjectured that there does
not exists a QOU process driven by N, due to the fact that the sample paths of N
are unbounded on each non-empty interval with probability one.
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Continuity result

Lemma

Let p ≥ 0 and assume that N has finite p-moments. Then, N is continuous in Lp and
when p ≥ 1 there exists α, β ∈ R+ such that ‖Nt‖p ≤ α+ β|t| for all t ∈ R.

1 The proof relies on an application of the Steinhaus lemma borrowed from Surgailis
et al. (1998) together with an extension of a result by Cohn (1972).

2 In fact, we show the above result not only in Lp(Ω,F ,P), but in all modular spaces
Lφ(E, E, µ) where (E, E, µ) is a σ-finite measure space and φ : R→ R+ is a
symmetric continuous function, which is increasing on R+ and φ(0) = 0. Note
that for φ(x) = |x|p we have Lφ(E, E, µ) = Lp(E, E, µ).
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Proof of the existence

The existence of the pathwise Lebesgue integral
∫ t
−∞ eλsNs ds follows from the above

lemma since

E
[

∫ t

−∞
eλs|Ns | ds

]

≤

∫ t

−∞
eλsE[|Ns|] ds ≤

∫ t

−∞
eλs(α + β|s|) ds <∞.
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Proof of the existence

The existence of the pathwise Lebesgue integral
∫ t
−∞ eλsNs ds follows from the above

lemma since

E
[

∫ t

−∞
eλs|Ns | ds

]

≤

∫ t

−∞
eλsE[|Ns|] ds ≤

∫ t

−∞
eλs(α + β|s|) ds <∞.

Let X = (Xt )t∈R be defined by

Xt = Nt − λe−λt
∫ t

−∞
eλsNs ds, t ∈ R.

By use of partial integration it follows that X satisfies dXt = −λXt dt + dNt .
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Proof of the existence

The existence of the pathwise Lebesgue integral
∫ t
−∞ eλsNs ds follows from the above

lemma since

E
[

∫ t

−∞
eλs|Ns | ds

]

≤

∫ t

−∞
eλsE[|Ns|] ds ≤

∫ t

−∞
eλs(α + β|s|) ds <∞.

Let X = (Xt )t∈R be defined by

Xt = Nt − λe−λt
∫ t

−∞
eλsNs ds, t ∈ R.

By use of partial integration it follows that X satisfies dXt = −λXt dt + dNt . Moreover
by substitution we have that

Xt = λ

∫ 0

−∞
eλs(Nt − Nt+s) ds. (2)

Using the L1-continuity of N from the above lemma it follows that the integral (2) is a
limit of Riemann sums in L1, which together with the stationary increments of N implies
that X is stationary.
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Mean and variance

Assume that N has finite second-moments and let X be the corresponding QOU
process. Moreover, let VN(t) = Var(Nt ) for t ∈ R, denote the variance function of N.
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Mean and variance

Assume that N has finite second-moments and let X be the corresponding QOU
process. Moreover, let VN(t) = Var(Nt ) for t ∈ R, denote the variance function of N.

Theorem

E[X0] =
E[N1]

λ
and Var(X0) =

2

λ

∫ ∞

0
e−λsVN(s) ds.

For example when Nt = µt + σBH
t and BH is a fBm of index H ∈ (0, 1), we have

VN(t) = t2H for t > 0 and hence

E[X0] =
µ

λ
and Var(X0) =

σ2Γ(1 + 2H)

2λ2H
.
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Asymptotic behavior of the autocovariance function

We will write f (t) ∼ g(t) for t → 0 (or ∞), when f (t)/g(t) → 1 for t → 0 (or ∞). Let

RX (t) = Cov(Xt ,X0) and RX (t) = RX (0) − RX (t) =
1

2
E[(Xt − X0)2].

Theorem

Assume that N has finite second-moments and let X be the QOU process driven by N.

Assume for t → ∞ that V′′
N(t) = O(e(λ/2)t) and e−λt = o(V′′

N(t)) and
V′′′

N(t) = o(V′′
N(t)). Then for t → ∞ we have

RX (t) ∼
1

2λ2
V′′

N(t).

Assume that for t → 0 we have t2 = o(VN (t)). Then for t → 0 we have
RX (t) ∼ 1

2 VN(t).
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We will write f (t) ∼ g(t) for t → 0 (or ∞), when f (t)/g(t) → 1 for t → 0 (or ∞). Let

RX (t) = Cov(Xt ,X0) and RX (t) = RX (0) − RX (t) =
1

2
E[(Xt − X0)2].

Theorem

Assume that N has finite second-moments and let X be the QOU process driven by N.

Assume for t → ∞ that V′′
N(t) = O(e(λ/2)t) and e−λt = o(V′′

N(t)) and
V′′′

N(t) = o(V′′
N(t)). Then for t → ∞ we have

RX (t) ∼
1

2λ2
V′′

N(t).

Assume that for t → 0 we have t2 = o(VN (t)). Then for t → 0 we have
RX (t) ∼ 1

2 VN(t).

Recall that a stationary process Z = (Zt)t∈R is said to have long range
dependence of order α ∈ (0, 1) if its autocovariance function RZ (t) is regularly
varying of index −α for t → ∞.
Thus, long range dependence of a QOU process X is the same as that V′′

N(t) is
regularly varying of exponent β ∈ (−1, 0) for t → ∞.
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Asymptotic behavior of the autocovariance function

We will write f (t) ∼ g(t) for t → 0 (or ∞), when f (t)/g(t) → 1 for t → 0 (or ∞). Let

RX (t) = Cov(Xt ,X0) and RX (t) = RX (0) − RX (t) =
1

2
E[(Xt − X0)2].

Theorem

Assume that N has finite second-moments and let X be the QOU process driven by N.

Assume for t → ∞ that V′′
N(t) = O(e(λ/2)t) and e−λt = o(V′′

N(t)) and
V′′′

N(t) = o(V′′
N(t)). Then for t → ∞ we have

RX (t) ∼
1

2λ2
V′′

N(t).

Assume that for t → 0 we have t2 = o(VN (t)). Then for t → 0 we have
RX (t) ∼ 1

2 VN(t).

When N is a fBm of index H ∈ (0, 1) we have VN(t) = t2H and hence
V′′

N(t) = 2H(2H − 1)t2H−2 for t > 0, which shows that for H 6= 1/2 and t → ∞ we
have

RX (t) ∼
( H(2H − 1)

λ2

)

t2H−2. (3)

The asymptotic behavior (3) in the case of a fBm is also obtained in
Cheridito, Kawaguchi and Maejima (2003). Recall that for H = 1/2,
RX (t) = e−λt/(2λ).
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Moving averages

Let us consider the case where N = (Nt )t∈R is a pseudo moving average (PMA) of the
form

Nt =

∫R [

f (t − s) − f (−s)
]

dZs , t ∈ R,
where Z = (Zt)t∈R is a centered Lévy process and f : R→ R is a measurable
function satisfying

∫R ∫R (

∣

∣x(f (t − s) − f (−s))
∣

∣

2
∧

∣

∣x(f (t − s) − f (−s))
∣

∣

)

ν(dx) ds <∞.

From a result by Cohn (1972) we may choose a measurable modification of N.
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Moving averages

Let us consider the case where N = (Nt )t∈R is a pseudo moving average (PMA) of the
form

Nt =

∫R [

f (t − s) − f (−s)
]

dZs , t ∈ R,
where Z = (Zt)t∈R is a centered Lévy process and f : R→ R is a measurable
function satisfying

∫R ∫R (

∣

∣x(f (t − s) − f (−s))
∣

∣

2
∧

∣

∣x(f (t − s) − f (−s))
∣

∣

)

ν(dx) ds <∞.

From a result by Cohn (1972) we may choose a measurable modification of N.

Theorem

There exists a unique in law QOU process driven by N, and it is a moving average of
the form

Xt =

∫R ψf (t − s) dZs, t ∈ R,
where

ψf (t) =
(

f (t) − λe−λt
∫ t

−∞
eλs f (s) ds

)

, t ∈ R.
Examples include the case where N is the LFSM with α ∈ (1, 2] and H ∈ (0, 1).
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Stochastic Fubini

Let Λ be a centered ID random measure on (S,S) where S is a non-empty space and
S is a σ-finite δ-ring on S. Let T be a separable and complete metric space, µ be a
σ-finite measure on T and f : T × S → R be a measurable function satisfying

∫

T
‖f (t, ·)‖φ µ(dt) <∞,

where for y ∈ R and s ∈ S we have

φ(y , s) = y2σ2(s) +

∫R (

|uy |21|uy|≤1 + (2|uy | − 1)1|uy|>1
)

ν(du, s),

and ‖ · ‖φ is the corresponding Musielak-Orlicz norm on Lφ(S, σ(S),m).

Theorem (Stochastic Fubini)

All of the below integrals exist and we have
∫

S

(

∫

T
f (t, s)µ(dt)

)

Λ(ds) =

∫

T

(

∫

S
f (t, s) Λ(ds)

)

µ(dt).

The above theorem relies on an inequality by Marcus and Rosiński (2003).
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Asymptotic behavior of the autocovariance function

Consider a moving average X = (Xt )t∈R of the form

Xt =

∫ t

−∞
ψ(t − s) dZs, t ∈ R. (4)

Proposition

Let X be given by (4) and assume that ψ(t) ∼ ctα for t → ∞.

For α ∈ (−1,− 1
2 ) we have for t → ∞ that RX (t) ∼ (c2kα)t2α+1.

For α ∈ (−∞,−1) we have for t → ∞ that RX (t) ∼ (c
∫ ∞

0 ψ(s) ds)tα,
provided

∫ ∞
0 ψ(s) ds 6= 0.
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Asymptotic behavior of the autocovariance function

Consider a moving average X = (Xt )t∈R of the form

Xt =

∫ t

−∞
ψ(t − s) dZs, t ∈ R. (4)

Proposition

Let X be given by (4) and assume that ψ(t) ∼ ctα for t → ∞.

For α ∈ (−1,− 1
2 ) we have for t → ∞ that RX (t) ∼ (c2kα)t2α+1.

For α ∈ (−∞,−1) we have for t → ∞ that RX (t) ∼ (c
∫ ∞

0 ψ(s) ds)tα,
provided

∫ ∞
0 ψ(s) ds 6= 0.

Now let N be a PMA of the form Nt =
∫ t
−∞(f (t − s) − f (−s)) dZs and let X be the

QOU process driven by N.

Proposition

Let α ∈ (−1,− 1
2 ) and assume that f ∈ C1((β,∞);R) with f ′(t) ∼ ctα.

Then for t → ∞ we have RX (t) ∼ ( c2kα

λ2 )t2α+1.
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Stability of the autocovariance function

For simplicity let us consider the case where N if a FBM of index H ∈ (0, 1) \ {1/2}.
Let X be the QOU process driven by N, that is,

Xt =

∫ t

−∞
ψH (t − s) dZs, ψH(t) = cH(tH−1/2 − λe−λt

∫ t

0
eλssH−1/2 ds).

For each bounded function f : R→ R with compact support let

Y f
t =

∫ t

−∞
f (t − s) dZs and X f

t = Xt + Y f
t .

Note that RY f (t) = 0 for t large.

Corollary

For some c1, c2, c3 6= 0 we have

For H ∈ (0, 1
2 ) and if

∫ ∞
0 f (s) ds 6= 0, then for t → ∞ we have

RX f (t) ∼ c2RX (t)t1/2−H ∼ c1tH−3/2.

For H ∈ ( 1
2 , 1), then for t → ∞ we have

RX f (t) ∼ RX (t) ∼ c3t2H−2.
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