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Azmoodeh, Tikanmäki, V. (2009), where we try to study the
hedging of look-back options in geometric fractional Brownian
market model.



References

◮ For fractional Brownian motion we use the book by Mishura:
Stochastic Calculus for Fractional Brownian Motion and

Related Processes, 2008.

◮ For the section Main results we use the paper Azmoodeh,
Mishura, V.: On hedging European options in geometric

fractional Brownian motion market model, Statistics &
Decisions (2010), forthcoming, and the manuscript
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HF
s dWs ;

here HF is a predictable process with the property

E
∫ T

0

(
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s

)2
ds < ∞.

Let BH be a fractional Brownian motion: BH is a continuous
centered Gaussian process with covariance

E
(

BH
t BH

s

)

=
1

2

(

t2H + s2H − |t − s|2H
)

.
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Representation theorem for fractional Brownian functionals?

One can show that FW
t = FBH

t , 0 ≤ t ≤ T . Hence, if the random
variable F ∈ L2(FW

T ), then we automatically have that

F ∈ L2(FBH

T ). In plain English: every Brownian functional is also a
fractional Brownian functional.
It is then natural to ask, if every square integrable fractional
Brownian functional has a representation as a stochastic integral
with respect to fractional Brownian motion?
Now we will have some problems:

◮ Fractional Brownian motion is not a semimartingale, and then
the definition of the integrals is not clear at all.

◮ In contrast to the Brownian case, we already have the first
negative result: if Y ∈ span{BH

s : s ≤ t} for H > 1
2
, then Y

may fail to have a representation as Y =
∫ t

0
fsdBH

s , where f is
a deterministic function [Pipiras & Taqqu, Molchan].
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follow this approach and prove the following type of result: if
F ∈ L2(FBH

T ), then one has the following representation for F

F = EF +

∫ T

0

HF
s δBH

s ,

and this ’integral’ is understood as Skorohod ’integral’, or as an
adjoint of Malliavin derivative.
But we continue to have problems:

◮ If you want that for s < t the following holds

∫ t

0

HuδBH
u =

∫ s

0

HuδBH
u +

∫ t

s

HuδBH
u ,

one must use non-anticipative integrands H.
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Representation theorem with the help of abstract ’integrals’; Stieltjes integrals

The integration theory with abstract ’integrals’ is difficult to
interpret in some applications. On the other hand, Stieltjes
integrals with respect to fractional Brownian motion, H > 1

2
, can

be reasonably interpreted in these applications.
We have now different type of problems:

◮ Which random variables Y ∈ L2(FBH

T ) have a representation

Y = C +

∫ T

0

HY
s dBH

s ,

where the integral is a Riemann-Stieltjes integral.

◮ Fact: if Y = F (BH
T ) with F ∈ C1(R), then

Y = F (0) +

∫ T

0

Fx(B
H
s )dBH

s .



Main results
Convex functions of B

H
T

The next result is by Azmoodeh, Mishura, V.: Assume that F is a
convex function with the right derivative F+

x . Then we have the
representation

F (BH
T ) = F (0) +

∫ T

0

F+
x (BH

s )dBH
s . (1)

◮ What is a bit surpising in (1) is the fact that the integral on
the right hand side is a Riemann-Stieltjes integral: if one
applies the change of variables formula (1) to the function
f (x) = |x | one obtains

|BH
T | =

∫ T

0

sgn(BH
s )dBH

s ,

and the process sgn(BH) has unbounded variation on
compacts.
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◮ A natural question: to what extend fractional Brownian
motion behaves as a continuous function with bounded
variation?
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Main results
Running maximum of a continuous bounded variation function A

The change of variables formula (1) is the same for a continuous
bounded variation functions A: if F is convex, then

F (AT ) = F (A0) +

∫ T

0

F+
x (As)dAs .

◮ A natural question: to what extend fractional Brownian
motion behaves as a continuous function with bounded
variation?

◮ Representation of the running maximum A∗
t = maxs≤t As of a

continuous bounded variation function A with A0 = 0:

A∗
t =

∫ t

0

1{A∗

s =As}dAs ; (2)

this is a result by Azmoodeh, Tikanmäki, V. [work in progress].

◮ Apparently (2) does not generalize to fractional Brownian
motion.
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It follows from recent work by Bender, Sottinen, V. that the
functional F ǫ with respect to the paths of X ǫ has the same integral
representation :

F ǫ = c +

∫ T

0

f (X ǫ

s , η1
s (ǫ), . . . , η

k
s (ǫ))dX ǫ

s .
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s , η1
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when it is true that one gets

FH = c +

∫ T

0

f (BH
s , η1

s (H), . . . , ηk
s (H))dBH

s ?

I hope that before my next talk on this topic we will have some
new results on this.

Thank you!


