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Introduction

Introduction

1. We study the Euler approximations of the solution of mixed stochastic
differential equation driven simultaneously by the fractional Brownian
motion with the Hurst parameter H > 1/2 and the Wiener process. The
error of the approximations is estimated via the norm in some Besov
spaces.
Several objects processed in time have a component with a long memory
(that is modeled by fBm with H ∈ (1/2, 1)) and also a component without
memory (that is modeled by a Wiener process). Therefore it is natural to
consider stochastic differential equation involving both standard Brownian
motion (Wiener process) and fractional Brownian motion.

Yuliya Mishura (Kiev University) Problems concerning mixed SDEs
27 January 2010, Ambit processes, Sandbjerg 3

/ 58



Introduction

Numerical solution via the time discretization of SDEs driven by Brownian
motion has the long history. We refer to the monograph of Kloeden,
Platen, containing the theory of numerical solution of such SDEs with
regular coefficients.
As to Euler approximations for SDEs driven by fBm, we mention the paper
of Nourdin and Neuenkirch that studies Euler approximations for
homogeneous one-dimensional SDEs with bounded coefficients having
bounded derivatives up to the third order. The paper of M., Shevchenko
focuses on discrete-type approximations of solutions to non-homogeneous
stochastic differential equations involving fractional Brownian motion.
Nowadays the SDEs with more irregular fBm (H < 1/2) (it is rough path
theory) are treated. In a general context, strong and weak approximations
to Gaussian rough paths have been studied by Friz and Victoir, Lejay,
Neuenkirch, Nourdin, Tindel. Approach to expansion of the functionals
from the solution of SDE w.r.t. fBm, and the error estimate was
considered by Neuenkirch, Nourdin, Rössler, Tindel. As to the mixed
stochastic differential equations, the existence and uniqueness of the
solution in the case H ∈ (3/4, 1) is contained in M., Posashkov.
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Preliminaries

Preliminaries

Let (Ω,F ,Ft ,P) be a complete probability space, with a filtration
satisfying standard conditions. Denote {Wt ,Ft , t ∈ [0,T ]} the standard
Brownian motion, adapted to this filtration.
Definition 1. The fractional Brownian motion (fBm) with Hurst index
H ∈ (0, 1) is a Gaussian process BH

t = {BH
t ,Ft , t ≥ 0}, having the

properties BH
0 = 0, EBH

t = 0, and
EBH

t BH
s = 1/2(|s|2H + |t|2H − |t − s|2H).

Remark 1. Fractional Brownian motion has a continuous modification,
according to the Kolmogorov theorem. In what follows we consider this
continuous modification. Also, we suppose that our fBm is adapted to the
filtration Ft , t ∈ [0,T ]. (We can suppose that Ft , t ∈ [0,T ] is generated
by W and BH .)
Remark 2. Evidently, for H = 1/2 fBm is a standard Brownian motion.
For H 6= 1/2 fBm has so called “memory” property. For H ∈ (1/2, 1), BH

has “long memory” property. Further we consider only fBm with Hurst
index H ∈ (1/2, 1).
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Preliminaries

In order to introduce the pathwise integrals w.r.t. fBm consider two
nonrandom functions f and g , defined on some interval [a, b] ⊂ R.
Suppose also that the limits
f (u+) := limδ↓0 f (u + δ) and g(u−) := limδ↓0 g(u − δ), a ≤ u ≤ b exist.
Put
fa+(x) := (f (x)− f (a+))1(a,b)(x), gb−(x) := (g(b−)− g(x))1(a,b)(x).

Suppose that fa+ ∈ Iαa+(Lp[a, b])), gb− ∈ I 1−α
b− (Lq[a, b])), for some

p ≥ 1, q ≥ 1, 1/p + 1/q ≤ 1, 0 ≤ α ≤ 1. Consider fractional derivatives

(Dα
a+f )(x) =

1

Γ(1− α)

( f (s)

(s − a)α
+ α

∫ s

α

f (s)− f (u)

(s − u)1+α
du
)

1(a,b)(x),

(D1−α
b− gb−)(x) =

e−iπα

Γ(α)

( gb−(s)

(b − s)1−α + (1− α)

∫ b

s

gb−(s)− gb−(u)

(s − u)2−α du
)

×1(a,b)(x).

It is known that Dα
a+fa+ ∈ Lp[a, b], D1−α

b− gb− ∈ Lq[a, b].
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Preliminaries

Definition 2. (Zaehle, Nualart, Rascanu) Under above assumptions, the

generalized (fractional) Lebesgue-Stieltjes integral
∫ b
a f (x)dg(x) is defined

as∫ b

a
f (x)dg(x) :=

∫ b

a
(Dα

a+fa+)(x)(D1−α
b− gb−)(x)dx+f (a+)(g(b−)−g(a+)),

and for αp < 1 it can be simplified to∫ b

a
f (x)dg(x) :=

∫ b

a
(Dα

a+fa+)(x)(D1−α
b− gb−)(x)dx .

As it follows from SKM, for any 1− H < α < 1 there exists fractional
derivative D1−α

b− BH
b−(x) ∈ L∞[a, b]. Therefore, for f ∈ Iαa+(L1[a, b]) we can

define the integral w.r.t. fBm in the following way:
Definition 3. (Zaehle, Nualart, Rascanu) The integral with respect to fBm
is defined as ∫ b

a
fdBH :=

∫ b

a
(Dα

a+fa+)(x)(D1−α
b− BH

b−)(x)dx .
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Preliminaries

Consider the following functional spaces. For 0 < θ < 1 let
W θ

1 = W θ
1 [0,T ] be the space of real-valued measurable functions

f : [0,T ]→ R :

‖f ‖1,θ := sup
0≤s<t≤T

( |f (t)− f (s)|
(t − s)θ

+

∫ t

s

|f (u)− f (s)|
(u − s)1+θ

du
)
<∞.

also, let W θ
2 = W θ

2 [0,T ] be the space of real-valued measurable functions
f : [0,T ]→ R such that

‖f ‖2,θ :=

∫ T

0

|f (s)|
sθ

ds +

∫ T

0

∫ s

0

|f (s)− f (u)|
(s − u)1+θ

duds <∞.

Note that the space W θ
2 is Banach space with respect to corresponding

norms and ‖f ‖1,θ is a seminorm. Of course, we can extend the definition
of the space W θ

2 [0,T ] to any subinterval [s, t] ⊂ [0,T ], and consider the
space W θ

2 [s, t] with the norm

‖f ‖2,θ,s,t :=

∫ t

s

|f (u)|
(u − s)θ

du +

∫ t

s

∫ v

0

|f (v)− f (r)|
(v − r)1+θ

drdv .
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Some results concerning mixed stochastic differential equations

Some results concerning mixed stochastic differential
equations

Consider one-dimensional stochastic differential equation of the form

Xt = X0 +

∫ t

0
a(s,Xs)ds +

∫ t

0
b(s,Xs)dWs +

∫ t

0
c(s,Xs)dBH

s , t ∈ [0,T ],

(1)
where X0 is F0-measurable random variable with finite moments of any
order, W is standard Brownian motion, BH is fBm with Hurst index
H ∈ ( 1

2 , 1), the first integral in the right-hand side is Lebesgue-Stieltjes
integral, the second one is stochastic integral with respect to standard
Brownian motion, and the third one is the generalized Lebesgue-Stieltjes
integral from the Definition 3.
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Some results concerning mixed stochastic differential equations

We suppose that the coefficients satisfy the following assumptions

(A) There exists such K > 0 that for any s ∈ [0,T ] and
x ∈ R |a(s, x)|+ |b(s, x)|+ |c(s, x)| ≤ K .

(B) There exists such L > 0 that for any t ∈ [0,T ] and x , y ∈ R

|a(t, x)− a(t, y)|+ |b(t, x)− b(t, y)|+ |c(t, x)− c(t, y)| ≤ L|x − y |.

(C) The function c(t, x) is differentiable in x and there exist such
constant B > 0 and parameter β ∈ (1− H, 1) that for any
s, t ∈ [0,T ] and x ∈ R

|a(s, x)−a(t, x)|+ |b(s, x)−b(t, x)|+ |c(s, x)− c(t, x)|+ |∂xc(s, x)−

∂xc(t, x)| ≤ B|s − t|β.

(D) Partial derivative ∂xc(t, x) is Hölder continuous in x : there exist such
constant D > 0 and parameter ρ ∈ (3/2− H, 1) that for any
t ∈ [0,T ] and x , y ∈ R

|∂xc(t, x)− ∂xc(t, y)| ≤ D|x − y |ρ.
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Some results concerning mixed stochastic differential equations

As it was stated in [M.,Posashkov], under the conditions (A)–(D) the
equation (1), considered for the values of Hurst index H ∈ ( 3

4 , 1), has the
unique solution {Xt , t ∈ [0,T ]}, and this solution belongs to Besov space
W γ

3 ([0,T ]), 0 < γ < min(1/2, β, ρ/2, ρ− 1/2). Here

W γ
3 ([0,T ]) := {Y = Yt(ω) : (t, ω) ∈ [0,T ]× Ω, ||Y ||γ <∞},

with the norm

‖Y ‖2
γ := sup

t∈[0,T ]

(
EY 2

t + E

(∫ t

0

|Yt − Ys |
(t − s)1+γ

ds

)2
)
. (2)

However, as we shall see from the calculations below, the rate of
convergence will be the same for any H ∈ ( 1

2 , 1) provided that the solution
of the equation (1) exists, is unique and the conditions (A)–(D) hold.
Therefore, in what follows it will be our case.
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Preliminary properties of Euler approximations

Preliminary properties of Euler approximations

Now, let 0 = τ0 < τ1 < · · · < τn = T , δ = T/n, τk = kδ. Consider
discrete Euler approximation of solution of equation (1):

X δ
τk+1

= X δ
τk

+ a(τk ,X
δ
τk

)(τk+1 − τk) + b(τk ,X
δ
τk

)(Wτk+1
−Wτk )+

c(τk ,X
δ
τk

)(BH
τk+1
− BH

τk
),

where X δ
τ0

= X0.
If tu = max{τn : τn ≤ u}, then the corresponding continuous interpolation
satisfies the equation

X δ
u = X δ

tu +a(tu,X
δ
tu)(u−tu)+b(tu,X

δ
tu)(Wu−Wtu)+c(tu,X

δ
tu)(BH

u −BH
tu ),

or, in the integral form,

X δ
u = X δ

0 +

∫ u

0
a(ts ,X

δ
ts )ds +

∫ u

0
b(ts ,X

δ
ts )dWs +

∫ u

0
c(ts ,X

δ
ts )dBH

s . (3)
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Preliminary properties of Euler approximations

At first we establish growth and Hölder property of trajectories of Euler
approximations {X δ

t , t ∈ [0,T ]}. In what follows we denote C the
constants which values will be not so important.
Theorem 1. Let the conditions (A)–(D) hold. Then the following
statements are true.
1) There exists such random variable C (ω) having moments of any order
that |X δ

t | ≤ C (ω), t ∈ [0,T ];
2) For any 0 < η < 1/2 there exists such random variable C (ω, η) having
moments of any order that |X δ

t − X δ
s | ≤ C (ω, η)|t − s|1/2−η, s, t ∈ [0,T ].

Remark 1. Corresponding Hölder properties of the solution of the equation
(1) can be established similarly.
Theorem 2. Under the conditions (A)–(D) for any
0 < γ < min(1/2, β, ρ/2, ρ− 1/2) there exists a constant C = C (γ),
depending on γ but not on δ, such that ‖X δ‖2

γ ≤ C (γ) for any δ > 0.
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Rate of convergence of Euler approximations

The rate of convergence in Besov space of Euler
approximations

Introduce the notations

C1(ω, η, s, t) := Cη ·

(∫ t

s

∫ t

s

|Wy −Wx |2/η

|x − y |1/η
dxdy

)η/2

, (4)

where Cη is some constant,

C2(ω, α, s, t) = sup
s≤u≤v≤t

|(D1−α
v− BH

v−)(u)|. (5)

Now we fix some α ∈ (1− H, 1/2), sufficiently small η > 0, and consider
the values of C1(ω, η, 0, t) and C2(ω, α, 0, t) as the stochastic processes
with respect to t ∈ [0,T ]. Evidently, they are increasing and continuous in
t. Further, for any t ∈ [0,T ] both the random variables C1(ω, η, 0, t) and
C2(ω, α, 0, t) have the moments of any order. So, if we define the stopping
times τN := inf{t ∈ [0,T ] : C1(ω, η, 0, t) + C2(ω, α, 0, t) > N} ∧ T then
C1(ω, η, 0, t ∧ τN) ≤ N, C2(ω, α, 0, t ∧ τN) ≤ N, and for a.s. ω ∈ Ω
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Rate of convergence of Euler approximations

we have that τN = T for any N > N(ω). For any N > 0 define
t(N) = t ∧ τN and the norm

||X δ − X ||2γ,N := sup
0≤t≤T

E(Xt(N) − X δ
t(N))2

+E

(∫ t(N)

0
|Xt(N) − X δ

t(N) − Xs + X δ
s |(t − s)−1−γds

)2

.

Theorem 3. Let assumptions (A)–(D) hold and equation (1) has the
unique solution X . Then the Euler approximations X δ converge to X in
Besov space W 3

γ [0,T ] for any 0 < γ < 1/2 in the following sense: for any
η > 0 there exists C = Cη such that

||X δ − X ||γ,N ≤ exp{CN2}δκ+H−1−η,

where κ = min{1/2, β}.
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Mixed financial markets

Mixed financial markets

2. We consider financial market with risky asset governed by both the
Wiener process and fractional Brownian motion with Hurst parameter
H > 3/4. Using Hitsuda and Cheridito representations for the mixed
Brownian–fractional Brownian process, we present the solution of the
problem of efficient hedging.
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Mixed financial markets

Let we have a financial market with two assets: non-risky asset

Bt = B0ert , t ≥ 0, B0 > 0, (6)

r > 0 is a constant risk-free rate, and risky asset that is governed by the
linear combination of W and BH

St = S0 exp{µt + σ1Wt + σ2BH
t }, t ≥ 0, (7)

where S0 > 0, µ ∈ R is a drift coefficient, σ1 > 0 is a volatility coefficient
for standard Brownian motion W , σ2 > 0 is a volatility coefficient for fBm
BH . Such model will be called the mixed Brownian-fractional-Brownian
one.
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Mixed financial markets

Fix some finite horizon T > 0 and consider our market on the interval
[0,T ]. Denote the filtration FS = {FS

t , 0 ≤ t ≤ T}, where
FS
t = σ{Su, 0 ≤ u ≤ t}. Further, by F̄S = {F̄S

t , 0 ≤ t ≤ T} we denote the
smallest filtration that contains FS and fulfils the usual assumptions. The
following properties of the model (6) and (7) were established by Hitsuda
and Cheridito:
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Mixed financial markets

1. The mixed process MH,σ
t = Wt + σBH

t , t ∈ [0,T ] is equivalent (in
measure) to Brownian motion if and only if H ∈ (3/4, 1].
2. For H ∈ (3/4, 1] there exists a unique real-valued Volterra kernel
r̃σ ∈ L2([0,T ]2) such that

Bt := MH,σ
t −

∫ t

0

∫ s

0
r̃σ(s, u)dMH,σ

u ds, t ∈ [0,T ] (8)

is a Brownian motion on (Ω,F,P).
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Mixed financial markets

3. The “inverse” representation holds:

MH,σ
t := Bt +

∫ t

0

∫ s

0
rσ(s, u)dBuds, t ∈ [0,T ],

where rσ ∈ L2([0,T ]2) is the negative resolvent kernel of r̃σ, rσ is the
unique solution of the equation

σ2H(2H−1)(t−s)2H−2 = rσ(t, s)+

∫ s

0
rσ(t, x)rσ(s, x)dx , 0 ≤ s < t ≤ T ,

(9)
and this representation is unique in the following sense: if B̃t is a
Brownian motion on (Ω,F,P) and l ∈ L2([0,T ]2) a real-valued Volterra
kernel such that

MH,σ
t := B̃t +

∫ t

0

∫ s

0
l(s, u)dB̃uds, t ∈ [0,T ],

then B̃ = B and l = rσ.
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Mixed financial markets

4. As a consequence, the process σ1Wt + σ2BH
t is a semimartingale with

respect to its natural filtration. Let the process Ψ(s) be F̄S -predictable and

satisfy the condition
∫ T

0 |Ψu|2du <∞ a.s. Then the stochastic integral∫ T
0 ΨudSu is correctly defined as the integral w.r.t. the semimartingale.
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Mixed financial markets

5. Let {Bt , t ∈ [0,T ]} be a Brownian motion on a probability space
(Ω,F,P) and l ∈ L2([0,T ]2) a real-valued Volterra kernel. Then

E exp

(∫ t

0

∫ s

0
l(s, u)dBudBs −

1

2

∫ t

0

(∫ s

0
l(s, u)dBu

)2

ds

)
= 1

moreover, by Girsanov theorem,

Bt −
∫ t

0

∫ s

0
l(s, u)dBuds, t ∈ [0,T ]

is a Brownian motion on (Ω,F, P̃), where

dP̃

dP
= exp

(∫ T

0

∫ s

0
l(s, u)dBudBs −

1

2

∫ T

0

(∫ s

0
l(s, u)dBu

)2

ds

)
.
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Mixed financial markets

6. If we consider the following class of strategies

S = {Ψ = (Ψ1,Ψ2)} : Ψ1 and

Ψ2 are FS -predictable,∫ T

0
|Ψ1

u|du <∞,
∫ T

0
|Ψ2

u|2du <∞ a.s.,

Vt = V0 +

∫ t

0
Ψ2

udSu, t ∈ [0,T ]

and there exists a constant c ≥ 0 such that

inf
t∈[0,T ]

∫ T

0
Ψ2

udSu ≥ −c a.s},

then the model (6)–(7) is arbitrage-free and complete.
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Mixed financial markets

Now we establish one auxiliary result concerning the form of the kernel
rσ(t, x).
Lemma 1. For any 0 ≤ s ≤ t ≤ T ∧ Tσ−1/α we have that

rσ(t, s) = σ1/αr1(σ1/αt, σ1/αs),

α = H − 1/2.
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Mixed financial markets

Now, denote σ = σ2
σ1

.
Lemma 2. There exists such constants C > 0 and ε > 0 that for any
σ < C we have the relation

E exp

{
1 + ε

2

∫ T

0

(∫ s

0
rσ(s, u)dBu

)2
ds

}
<∞ (10)

whence for any σ < C there exists the unique probability measure
P∗ = P∗(σ) such that the discounted process

St exp{−rt} = S0 exp
{

(µ− r)t + σ1

(
Wt + σBH

t

)}
=

S0 exp

{
(µ− r)t + σ1

(
Bt +

∫ t

0

∫ s

0
rσ(s, u)dBuds

)}
becomes a martingale with respect to P∗ and to the natural filtration F̄S .
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Mixed financial markets

If we intend to choose such probability measure P∗ that the discounted
process

St exp{−rt} = S0 exp

{
(µ− r)t + σ1

(
Bt +

∫ t

0

∫ s

0
rσ(s, u)dBuds

)}
becomes P∗-martingale, then dP∗

dP is defined by the unique relation

dP∗

dP

∣∣∣
F̄S
t

= exp
{
−
∫ t

0

(µ− r

σ1
+
σ1

2
+

∫ s

0
rσ(s, u)dBu

)
dBs−

1

2

∫ t

0

(µ− r

σ1
+
σ1

2
+

∫ s

0
rσ(s, u)dBu

)2
ds
}
.

(11)
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Mixed financial markets

It is established throughout the proof that the theorem is valid for

CH,Tσ
4 exp{2CT} <

1

1 + ε
, (12)

where CH,T = 2H2(2H − 1)2 T 4H−3

4H−3 depends only on H and T , and

CT =

∫ T

0

∫ s

0
r 2
1 (s, x)dxds.
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The problem of efficient hedging on the mixed market

The problem of efficient hedging on the mixed market

Let H be some contingent claim on our financial market. Consider the
natural filtration F̄S generated by the process Wt + σBH

t , 0 ≤ t ≤ T and
the class S of self-financing strategies described above. Consider the
problem of efficient hedging, which purpose is to minimize the potential
losses, weighted by the hedger’s risk preference from imperfect hedging.
Efficient hedging aims at finding an admissible self-financing strategy
Ψ∗ = (Ψ∗,1,Ψ∗,2) ∈ S that minimizes the shortfall risk

E

(
l

((
H − V Ψ∗

T

)+
))

= min
Ψ

E

(
l

((
H − V Ψ∗

T

)+
))

with initial capital V0 ≤ ν0 < H0 := EP∗(He−rT ). Here l denotes the loss
function that reflects the investor’s risk preference.
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The problem of efficient hedging on the mixed market

According to Foellmer and Leukert, the important particular case is the
loss function l(x) = xp

p , p > 0, where p > 1 corresponds to risk-averse
investor, p = 1 corresponds to risk indifference, and 0 < p < 1 means that
the investor is risk-taker. In the general case, the minimization problem for
some set of measures P∗ ∈ P can be reformulated as follows (Foellmer,
Leukert):
(A) to find the randomized test, or minimizer, 0 ≤ ψ∗ ≤ 1, which is
F̄T -measurable, and which minimizes the shortfall risk E [l(H(1− ψ))]
among all F̄T -measurable 0 ≤ ψ ≤ 1 subject to constraints E ∗ψH ≤ ν0 for
all P∗ ∈ P.
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The problem of efficient hedging on the mixed market

Denote I = (l
′
)−1 the inverse function to l

′
. It was proved by Foellmer,

Leukert that the solution of the problem of imperfect efficient hedging is
the perfect hedge Ψ∗ for the modified contingent claim H∗ = ϕ∗H, where
ϕ∗ is determined as

ϕ∗ = 1−

(
I
(
a∗e−rTZT

)
H

∧ 1

)
for p > 1,

ϕ∗ = I
{

a∗e−rTH1−pZT

}
for 0 < p < 1,

ϕ∗ = 1
{

a∗e−rTZT < 1
}

for p = 1,

(13)

and ZT refers to the density of equivalent martingale measure P∗:

Zt =
dP∗

dP

∣∣∣
F̄S
t

, t ∈ [0,T ],

a∗ is such constant that EP∗ [Hϕ
∗] = ν0.

Yuliya Mishura (Kiev University) Problems concerning mixed SDEs
27 January 2010, Ambit processes, Sandbjerg 30

/ 58



The problem of efficient hedging on the mixed market

The formula (13) gives the general solution of our problem of imperfect
efficient hedging for small σ, satisfying (12). However, it is hard to proceed
with some computations because the distribution of ZT , according to (11),
depends on the whole trajectory of Wiener process {Bt , 0 ≤ t ≤ T}.
However, in turn, in the case when the objective measure P coincides with
the measure P∗ and the contingent claim H depends only on the final
value of discounted risk asset: H = H(XT ), the situation can be simplified.
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The problem of efficient hedging on the mixed market

Indeed, in this case

E

(
l

((
H − V Ψ

T

)+
))

= E

((
H(XT )− ψT e−rT − ψ2

TXT

)+
)p

,

where E (·) means mathematical expectation with respect to the measure
for which XT has the known log-normal distribution,

XT = S0 exp
{
σ1BT −

σ2
1

2 T
}

, B is Wiener process. The condition

EP∗H ≤ ν0 is reduced to EH(XT ) ≤ ν0, and we come to the standard
problem of efficient hedging.
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Imperfect hedging on an incomplete market

Imperfect hedging on an incomplete market.
Approximations of fractional Brownian motion. Minimal
martingale measure for an approximate market

Incomplete semimartingale market,
constructed as an approximation of initial market

For some reasons, we can try to apply another approach to the solution of
the problem of efficient hedging. One of possible reasons is: let the
objective measure P does not coincide with the martingale measure P∗

but we still want to obtain comparatively simple and computable
distribution of the solution of the problem of efficient hedging.
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Imperfect hedging on an incomplete market

Another reason: even if H ∈ ( 1
2 ,

3
4 ), we can try to solve the problem of

efficient hedging, using the properties of the involved processes W and
BH . In this case we can consider an incomplete market adapted to the
filtration generated by the couple of two independent processes W and
fBm BH . Since BH is not a semi-martingale we have no martingale
measure P∗. However, there are some possibilities to approximate BH with
the help of the bounded processes of bounded variation. One of these
possibilities was considered by Androshchuk.
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Imperfect hedging on an incomplete market

Consider the representation of fBm BH via some Wiener process W̃ on the
finite interval [0,T ] (Norros, Valkeila, Virtamo):

BH
t = C 1

H

∫ t

0
s−α

(∫ t

s
uα(u − s)α−1du

)
dW̃s , (14)

where C 1
H = α

(
2HΓ(1−α)

Γ(1−2α)Γ(α+1)

)1/2
, α = H − 1

2 , Wiener processes W̃ and

W are independent. If we formally apply stochastic Fubini theorem to the
right-hand side of (14), we obtain interior integral divergent, due to
singularity in the upper limit of integration.
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Imperfect hedging on an incomplete market

However, if we retreat from the singularity point, we can obtain the family
of bounded processes of bounded variation BH,ε

t of the form

BH,ε
t =

∫ t

0
ϕε(s)ds,

where

ϕε(s) = (C 1
Hsα

∫ (1−ε)s

0
u−α(s − u)α−1dW̃u) ∧ (ε)−1, 0 < ε < 1.
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Imperfect hedging on an incomplete market

As it follows from the results of Androshchuk, BH,ε
t

P→ BH
t as ε→ 0.

Moreover, in the paper of Ralchenko and Shevchenko the convergence in
probability of BH,ε

t to Bt in some Besov spaces, introduced above, was
established. Now, consider the financial market with the same non-risky
asset as in (6) and ”approximate” risky asset

St = S0 exp{µt + σ1Wt + σ2BH,ε
t }, t ≥ 0. (15)

This approximate price of risky asset is a semi-martingale with respect to

the filtration FW ,W̃
t := σ{Ws , W̃s , 0 ≤ s ≤ t}, t ∈ [0,T ].
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Imperfect hedging on an incomplete market

By F̄W ,W̃ = {F̄W ,W̃
t , 0 ≤ t ≤ T} we denote the smallest filtration that

contains FW ,W̃ and fulfils the usual assumptions. Introduce also the
notation FW̃

t := σ{W̃s , 0 ≤ s ≤ t}, t ∈ [0,T ] and corresponding filtration

F̄W̃ . The next result is an evident consequence of the structure of
approximate market.
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Imperfect hedging on an incomplete market

Lemma 3. All equivalent martingale measures P∗ for the market
described by the equations (6) and (15), equal a product of two likelihood
ratios

dP∗

dP

∣∣∣
F̄W ,W̃
t

= Z ε,1
t Z 2

t , (16)

where

Z ε,1
t = exp

{∫ t

0
θε(s)dWs −

1

2

∫ t

0
θ2
ε(s)ds

}
, (17)

θε(s) =
r − µ
σ1
− σ1

2
− σ2

σ1
ϕε(s), (18)

Z 2
t = exp

{∫ t

0
b(s)dW̃s −

1

2

∫ t

0
b2(s)ds

}
, (19)

where b = b(s) be any F̄W ,W̃
s -adapted function such that EZ ε,1

T Z 2
T = 1.
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Imperfect hedging on an incomplete market

Minimal martingale measure (MMM) on the approximate market

Evidently, among all the measures, described by the relations (16) – (19),
the simplest measure corresponds to the case b(s) ≡ 0, or Z 2

t ≡ 1.
Consider this measure in more detail.
Definition 1. (Foellmer, Schweizer) Probability measure P∗ ∼ P is called

minimal martingale measure if E
(
dP∗

dP

)2
<∞ and any square-integrable

P-martingale M, strongly orthogonal to the discounted price process
Xt = e−rtSt , is also P∗-martingale.
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Imperfect hedging on an incomplete market

According to the paper of Schweizer, minimal martingale measure can be
found in the following way. Let the semi-martingale Y has a canonical
decomposition of the form

Y = Y0 + M + A = X0 + M +

∫
αd〈M〉, (20)

where M is a martingale, α is the predictable process, then the minimal
martingale measure has a density

ẐT = exp

{
−
∫ T

0
αsdMs −

1

2

∫ T

0
α2
sd〈M〉s

}
,

under the condition E Ẑ 2
T <∞.
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Imperfect hedging on an incomplete market

In our case, Y is discounted price process

X ε
t = S0 exp

{
(µ− r)t + σ1Wt + σ2

∫ t

0
ϕε(s)ds

}
,

and, according to Itô formula,

X ε
t = S0 + σ1

∫ t

0
X ε
s dWs +

σ2

2

∫ t

0
X ε
s ds +

∫ t

0
X ε
s [(µ− r) + σ2ϕε(s)]ds.
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Imperfect hedging on an incomplete market

Therefore, we can put in (20)

Mt = σ1

∫ t

0
XsdWs , 〈M〉t = σ2

1

∫ t

0
X 2
s ds

and

αt = X−1
t

(
1

2
+
µ− r

σ2
1

+
σ2ϕε(t)

σ1

)
.

At last, it means that the density of MMM for approximate market has a
form

ẐT = Ẑ ε
T = exp

{
−
∫ T

0

(
σ1

2
+
µ− r

σ1
+ σ2ϕε(s)

)
dWs

−1

2

∫ T

0

(
σ1

2
+
µ− r

σ1
+ σ2ϕε(s)

)2

ds

}
= Z ε,1

T ,

and minimal martingale measure (if it exists) corresponds to the case
b ≡ 0 in (19), or Z 2

t ≡ 1.
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Imperfect hedging on an incomplete market

Only, we must check that E (Ẑ ε
T )2 <∞. Prove the following auxiliary

result.
Lemma 4. The density Ẑ ε

T has finite moments of any order.

Proof.

Recall that θε(s) is bounded and take into account independence of θε(s)
and W . Then we obtain that for any q > 0

E (Ẑ ε
T )q = E [E ((Ẑ ε

T )q/F̄W̃
T )] = E

(q2 − q

2

∫ T

0
θ2
ε(s)ds

)
<∞. (21)

So, in our situation we choose minimal martingale measure as ”the best”
equivalent martingale measure.
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Imperfect hedging on an incomplete market

The solution of the ”approximate” problem of efficient hedging with
respect to MMM

Let ϕ∗ε be the function from (13), where we substitute Ẑ ε
T instead of ZT .

In what follows we suppose that the discounted contingent claim H is
positive and depends only on the final value of discounted price process,
H = H(X ε

T ), where H(·) : R→ R+ is measurable function, and in this
case present some results concerning simplifying of possible computations.
Lemma 5. The equality holds,

E Ẑ ε
TH(X ε

t ) = (2π)
1
2

∫
R

H(eσ1T
1
2 x−σ

2
1

2
T )e

−x2

2 dx , (22)

under the condition that the last integral is finite.
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Imperfect hedging on an incomplete market

In what follows we consider only the case of risk-averse investor, when
p > 1 in (13) (other cases can be considered along the same lines). So,
throughout this section l(x) = xp, p > 1. We suppose that EHp <∞. At
first note that it follows from (21) that in this case both parts of equation
(22) are finite.
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Imperfect hedging on an incomplete market

Introduce the following notations. Let ς(·) : R→ R be some measurable

bounded function, I1(ς) =
∫ T

0 ς(s)ds, I2(ς) =
∫ T

0 ς2(s)ds,

H1(x) = H(S0 exp{σ1T
1
2 x − σ2

1
2 T}), G (ς(·), y) = exp{y + 1

2

∫ T
0 ς2(s)ds},

and the matrix

P(ς(·)) =

(
T

∫ T
0 ς(s)ds∫ T

0 ς(s)ds,
∫ T

0 ς2(s)ds

)

is non-degenerate. Also, let the set

A(ς(·), a) = {(x , y) ∈ R2 : a < H1(x)p−1G (ς(·), y)−1},

the function

Ψ̃(ς(·), a) =

∫
A(ς(·),a)

(H1(x)− a
1

p−1 G (ς(·), y)
1

p−1 )p(x , y , ς(·))dxdy ,

p(x , y , ς(·)) is the density of bivariate Gaussian distribution with zero
mean and covariance matrix P(ς(·)).
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Imperfect hedging on an incomplete market

Lemma 6. Suppose that the right-hand side of (22) is finite and let a∗ε
be the unique root of the equation

E Ψ̃(θε(·), a∗ε) = ν0. (23)

Then the solution (13) of the minimization problem with p > 1 has a form

ϕ∗ε = 1−
(a∗ε)

1
p−1 (Ẑ ε

T )
1

p−1

H(X ε
T )

∧ 1. (24)

Yuliya Mishura (Kiev University) Problems concerning mixed SDEs
27 January 2010, Ambit processes, Sandbjerg 48

/ 58



Imperfect hedging on an incomplete market

Asymptotic behavior of the solution of the problem of efficient
hedging with respect to MMM

Now, let parameter value ε→ 0.
Lemma 7. Under conditions of Lemma 6 we have that
E [l(H(1− ϕ∗ε))]→ 0 as ε→ 0.
Remark 2. Relation E [l(H(1− ϕ∗ε))]→ 0 means that under the filtration

F̄W ,W̃ hedging of contingent claim H is asymptotically perfect for any
ν0 > 0.
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Imperfect hedging on an incomplete market

The estimate of the solution of the ”approximate” problem of
efficient hedging for mixed measures

Since is hard to deduce computable formula for the solution of the
”approximate” problem of efficient hedging with respect to the whole
family of the ”mixed” measures defined by (16)–(19), we restrict ourself to

this family with F̄W̃
s -adapted process b ∈ L2([0,T ]× Ω). Denote

K (ς(·)) = (H(X ε
T )− (a∗ε)

1
p−1 (Ẑ ε

T (ς(·)))
1

p−1 )1
{(a∗ε)

1
p−1 (ẐεT (ς(·)))

1
p−1≤H(X εT )}

,

(25)
where we substitute ς(·) instead of θε(·) into Ẑ ε

T , i.e.,

Ẑ ε
T (ς(·)) = exp{−

∫ T
0 ς(s)dWs − 1

2

∫ T
0 ς(s)2ds}.

Consider the equation
EP∗K (ς(·)) = ν0, (26)

where the function K (ς(·)) is defined in (25). The equation (26) has the
unique solution a∗ε = a∗ε(ς(·)).
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Imperfect hedging on an incomplete market

Lemma 8. Let ψε be the minimizer for the problem of the efficient
hedging for the family of measures defined by (16)–(19) with F̄W̃

s -adapted
processes b ∈ L2([0,T ]× Ω). Then the upper bound holds,

E [l(H(1− ψ∗ε))] ≤ E [l(H(1− ϕ∗ε(θε(·))))].
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