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Independence associated to products

Non-Commutative probability spaces

Definition. A non-commutative probability space is a pair (A, ¢),
where
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Independence associated to products

Non-Commutative probability spaces

Definition. A non-commutative probability space is a pair (A, ¢),
where

e A is a unital algebra.
e ¢: A— Cis a linear functional, such that ¢(1) = 1.

Recall that

@ An algebra is a vectorspace A, which is equipped with an
associative product (a, b) — a-b: A x A — A, which behaves
nicely in combination with the linear operations, e.g.

Sandbjerg, January 2010
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Non-Commutative probability spaces

Definition. A non-commutative probability space is a pair (A, ¢),
where

e A is a unital algebra.
e ¢: A— Cis a linear functional, such that ¢(1) = 1.

Recall that

@ An algebra is a vectorspace A, which is equipped with an
associative product (a, b) — a-b: A x A — A, which behaves
nicely in combination with the linear operations, e.g.

a-(b+c)=a-b+a-c forall a,b,cin A
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Independence associated to products

Non-Commutative probability spaces

Definition. A non-commutative probability space is a pair (A, ¢),
where

e A is a unital algebra.
e ¢: A— Cis a linear functional, such that ¢(1) = 1.

Recall that

@ An algebra is a vectorspace A, which is equipped with an
associative product (a, b) — a-b: A x A — A, which behaves
nicely in combination with the linear operations, e.g.

a-(b+c)=a-b+a-c forall a,b,cin A

@ We do not assume that the product is commutative, i.e.
generally a- b # b - a.
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Independence associated to products

Non-Commutative probability spaces

Definition. A non-commutative probability space is a pair (A, ¢),
where

e A is a unital algebra.
e ¢: A— Cis a linear functional, such that ¢(1) = 1.

Recall that

@ An algebra is a vectorspace A, which is equipped with an
associative product (a, b) — a-b: A x A — A, which behaves
nicely in combination with the linear operations, e.g.

a-(b+c)=a-b+a-c forall a,b,cin A

@ We do not assume that the product is commutative, i.e.
generally a- b # b - a.

e We say that A is unital, if there exists a (necessarily unique)
neutral element 1 with respect to the product.
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Independence associated to products

The category of algebras with linear functionals

By ArF we denote the category of algebras A (over C) equipped
with linear functionals p: A — C.
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Independence associated to products

The category of algebras with linear functionals

By ArF we denote the category of algebras A (over C) equipped
with linear functionals p: A — C.

A “product” in the category At is an operation e on AwgF in the
form:

(A, p) e (B,¢) — (AeB,pei).

Sandbjerg, January 2010



Independence associated to products

The category of algebras with linear functionals

By ArF we denote the category of algebras A (over C) equipped
with linear functionals p: A — C.

A “product” in the category At is an operation e on AwgF in the
form:

(A, p) e (B,¢) — (AeB,pei).

In addition there are associated canonical embeddings:

ia: A— AeB, and 1g: B— AeB.
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Independence associated to products
Independence associated to a product “e”

Consider a product “e" on QAo F.
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Consider a product “e" on QAo F.

Suppose (A, ¢) is a NC-probability space and that A; and Aj3 are
two subalgebras of A.
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Independence associated to products

Independence associated to a product “e

Consider a product “e" on QAo F.

Suppose (A, ¢) is a NC-probability space and that A; and Aj3 are
two subalgebras of A.

Then A; and A, are called e-independent, if there exists a

homomorphism h: A; e Ay — A such that the following diagram
commutes (also at the level of linear functionals):
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Independence associated to products

Independence associated to a product “e

Consider a product “e" on QAo F.

Suppose (A, ¢) is a NC-probability space and that A; and Aj3 are
two subalgebras of A.

Then A; and A, are called e-independent, if there exists a
homomorphism h: A; ¢ Ay — A such that the following diagram
commutes (also at the level of linear functionals):

(A, 9)

Y
A
I
I
I
I

3h

|
(A17Q0‘A1) - (Al .A2a¢‘.41 .90|.A2) 2 (A2790|A2)
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Independence associated to products

How classical independence fits into this scheme

Suppose X; and X, are two (real-valued) random variables on the
classical probability space (2, F, P).
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How classical independence fits into this scheme

Suppose X; and X, are two (real-valued) random variables on the
classical probability space (2, F, P).

Consider then the NC-probability space (£L>(Q2, F, P),E).
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Independence associated to products

How classical independence fits into this scheme

Suppose X; and X, are two (real-valued) random variables on the
classical probability space (2, F, P).

Consider then the NC-probability space (£L>*(Q, F, P),E).
Consider also the two subalgebras given by

Ar = {f(%1) | f € By(R)}
Az = {f(X2) | f € Bo(R)}.

Sandbjerg, January 2010



Independence associated to products

How classical independence fits into this scheme

Suppose X; and X, are two (real-valued) random variables on the
classical probability space (2, F, P).

Consider then the NC-probability space (£L>*(Q, F, P),E).
Consider also the two subalgebras given by

Ar = {f(X1) | f € Bp(R)}

Az = {f(X2) | f € Bo(R)}.

Assume that A; and A, are ®-independent, i.e. there exists a
mapping h: A1 ® Ay — (L>(Q, F, P),E) such that the following
diagram commutes:
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Independence associated to products

How classical independence fits into the scheme

(L>(Q, F, P),E)
A
|
J1 Hh: J2
|

(A1L,E) — 2 (A @ A, EQE) <2 (4, E)
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Independence associated to products

How classical independence fits into the scheme

(L>(Q, F, P),E)
A
|
J1 Hh: J2
|

(A1L,E) — 2 (A @ A, EQE) <2 (4, E)

Here,

u(f(X1)) =f(X1) ®1, and 1(g(X2)) =1® g(X2),
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Independence associated to products

How classical independence fits into the scheme

(L>(Q, F, P),E)

A

. |
> Hh:
|

|
= (A1 ® Az, E ® E) 2 (A2, E)

(Alv E)

Here,

u(f(X1)) =f(X1) ®1, and 1(g(X2)) =1® g(X2),

and, by necessity,
h(f(X1) @ g(X2)) = f(X1) - g(X2).
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Independence associated to products

How classical independence fits into the scheme

Note then for f, g in Bp(R) that

E[h(f(X1) ® g(X2))] = E[f(X1) - g(X2)]
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Independence associated to products

How classical independence fits into the scheme

Note then for f, g in Bp(R) that

E[h(f(X1) ® g(X2))] = E[f(X1) - g(X2)]
and that

E®E[f(X1) ® g(X2)] = E[f(X1)] - E[g(X2)]-
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Independence associated to products

How classical independence fits into the scheme

Note then for £, g in By(R) that
E[h(f(X1) ® g(X2))] = E[f(X1) - g(X2)]
and that
E®E[f(X1) ® g(X2)] = E[f(X1)] - E[g(X2)]-

Thus the commutativity of the diagram is equivalent to the
condition:

Vf,g € Bo(R): E[f(X1) - g(X2)] = E[f(X1)] - E[g(X2)].
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Universal products

Co-products of algebras

For two algebras A and B, the co-product A]] B is the unique (up
to isomorphism) algebra, satisfying the following universal property:
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Universal products

Co-products of algebras

For two algebras A and B, the co-product A]] B is the unique (up
to isomorphism) algebra, satisfying the following universal property:

For any algebra C and any homomorphisms j4: A — C and
Jjg: B — C, there is a unique homomorphism h: A[[B — C such

that the following diagram commutes:
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Universal products

Co-products of algebras

For two algebras A and B, the co-product A]] B is the unique (up
to isomorphism) algebra, satisfying the following universal property:

For any algebra C and any homomorphisms j4: A — C and
Jjg: B — C, there is a unique homomorphism h: A[[B — C such
that the following diagram commutes:

C

A
I
I
I
I
I

3th

A—2 S A][B~—2L—8B
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Universal products

Co-products of algebras

For two algebras A and B, the co-product A]] B is the unique (up
to isomorphism) algebra, satisfying the following universal property:

For any algebra C and any homomorphisms j4: A — C and
Jjg: B — C, there is a unique homomorphism h: A[[B — C such

that the following diagram commutes:

A—2 S A][B~—2L—8B

@ 14 and g are canonical embeddings.
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Universal products
Co-products of algebras

For two algebras A and B, the co-product A]] B is the unique (up
to isomorphism) algebra, satisfying the following universal property:

For any algebra C and any homomorphisms j4: A — C and
Jjg: B — C, there is a unique homomorphism h: A[[B — C such

that the following diagram commutes:

A—2L S A][B~—2—B

@ 14 and g are canonical embeddings.

@ The homomorphism h is denoted by ja [] Jjs.
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Universal products

Universal products of algebras with functionals

A universal product in the category 2toF is a product “e" in the
form:
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Universal products

Universal products of algebras with functionals

A universal product in the category 2toF is a product “e" in the
form:

((Al? 301)7 (A27 902)) = (-Al H A27 Y1 e ‘;02)'
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Universal products

Universal products of algebras with functionals

A universal product in the category 2toF is a product “e" in the
form:

((Al? 301)7 (A27 902)) = (-Al H A27 Y1 e ‘;02)'

In this case the product “e" is determined by the operation:

(p1,92) — @1 @ .
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Universal products
Independence associated to a universal product

Suppose A; and A, are subalgebras of a NC-probability space
(A, ).
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Universal products
Independence associated to a universal product

Suppose A; and A, are subalgebras of a NC-probability space
(A, ).

Then the diagram

(A, »)
A
|

. L
JlHJz‘
|

|

(A1790|A1) & (A1HA27Q0’A1 .90|A2) = (A2790|A2)

always commutes at the level of the algebras.

1
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Universal products
Independence associated to a universal product

Suppose A; and A, are subalgebras of a NC-probability space
(A, ).

Then the diagram

(A, »)
A
|

. L
JlHJz‘
|

|

(-Al»@’Al) & (A1HA27Q0’A1 .90|A2) = (A2790|A2)

always commutes at the level of the algebras.

Independence thus amounts to the condition:

¢o (i [[12) = elar ®¢las-
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Universal products

Natural conditions to impose on “e

Consider pairs

(A1, 01), (A2, 92), (A3, 93), (C1, Y1), (C2, ¥2)

from 2AtoF, and consider further the following natural conditions:
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Universal products

Natural conditions to impose on “e

Consider pairs

(A1, 01), (A2, 92), (A3, 93), (C1, Y1), (C2, ¥2)

from 2AtoF, and consider further the following natural conditions:

(P1) 1 ® 2 = 2 @ 1 under the natural identification
.A1 HAQ ~ ./42]_[./41.
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Universal products

Natural conditions to impose on “e

Consider pairs

(A1, 01), (A2, 92), (A3, 93), (C1, Y1), (C2, ¥2)

from 2AtoF, and consider further the following natural conditions:

(P1) 1 ® 2 = 2 @ 1 under the natural identification
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(A1 TTA2) [T As ~ A TT(A2 11 As).

Sandbjerg, January 2010



Universal products

Natural conditions to impose on “e

Consider pairs

(A1, 01), (A2, 92), (A3, 93), (C1, Y1), (C2, ¥2)

from 2AtoF, and consider further the following natural conditions:

(P1) 1 ® 2 = 2 @ 1 under the natural identification
.A1 HAQ ~ ./42]_[./41.

(P2) (1 0¢2)ep3 = p1e(p2e¢3) under the natural identification
(A1 TTA2) [T As ~ A TT(A2 11 As).

(P3) (pro9p2)oti=i, i=12
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Universal products

Natural conditions to impose on “e

Consider pairs

(A1, 01), (A2, 92), (A3, 93), (C1, Y1), (C2, ¥2)

from 2AtoF, and consider further the following natural conditions:

(P1) 1 ® 2 = 2 @ 1 under the natural identification
.A1 HAQ ~ ./42]_[./41.

(P2) (1 0¢2)ep3 = p1e(p2e¢3) under the natural identification
(A1 TTA2) [T As ~ A TT(A2 11 As).

(P3) (pro9p2)oti=i, i=12

(P4) Suppose we have homomorphisms j;j: C; — A;, such that
¢; :go,-oj,', I: 1,2
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Universal products

Natural conditions to impose on “e

Consider pairs

(A1, 01), (A2, 92), (A3, 93), (C1, Y1), (C2, ¥2)

from 2AtoF, and consider further the following natural conditions:

(P1) 1 ® 2 = 2 @ 1 under the natural identification
.A1 HAQ ~ ./42]_[./41.

(P2) (1 0¢2)ep3 = p1e(p2e¢3) under the natural identification
(A1 TTA2) [T As ~ A TT(A2 11 As).

(P3) (pro9p2)oti=i, i=12

(P4) Suppose we have homomorphisms j;j: C; — A;, such that
¢;:¢;Oji, I:]. 2. Then

(p1092) 0 (j1 [ o) = ¢ @ ¢2.



Universal products
(P4) in terms of diagrams:

(Cr, 1) == (A1, 1)

lcy LAy
(ColICo,tpr @tp2) — — = = = — - alle > (A1 ][ A2, 010 2
Ly LAy

(C2,12) 2, (A2, 2)
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Universal products
Characterization of “nice”’ universal products

Theorem [Speicher, Ghorbal+Schiirmann, Muraki].
There are exactly 3 (non-degenerate) universal products satisfying
the conditions (P1)-(P4), namely

Sandbjerg, January 2010



Universal products
Characterization of “nice”’ universal products

Theorem [Speicher, Ghorbal+Schiirmann, Muraki].
There are exactly 3 (non-degenerate) universal products satisfying
the conditions (P1)-(P4), namely

@ The tensor product “®".
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Universal products
Characterization of “nice”’ universal products

Theorem [Speicher, Ghorbal+Schiirmann, Muraki].
There are exactly 3 (non-degenerate) universal products satisfying
the conditions (P1)-(P4), namely

@ The tensor product “®".

@ The free product “x".
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Universal products
Characterization of “nice”’ universal products

Theorem [Speicher, Ghorbal+Schiirmann, Muraki].
There are exactly 3 (non-degenerate) universal products satisfying
the conditions (P1)-(P4), namely

@ The tensor product “®".

@ The free product “x".

@ The boolean product “¢".
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Universal products
Characterization of “nice”’ universal products

Theorem [Speicher, Ghorbal+Schiirmann, Muraki].
There are exactly 3 (non-degenerate) universal products satisfying
the conditions (P1)-(P4), namely

@ The tensor product “®".

@ The free product “x".

@ The boolean product “¢".

There are exactly two more universal products satisfying only
(P2)-(P4), namely
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Universal products
Characterization of “nice”’ universal products

Theorem [Speicher, Ghorbal+Schiirmann, Muraki].
There are exactly 3 (non-degenerate) universal products satisfying
the conditions (P1)-(P4), namely

@ The tensor product “®".

@ The free product “x".

@ The boolean product “¢".
There are exactly two more universal products satisfying only

(P2)-(P4), namely

@ The monotone product “>".
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Universal products
Characterization of “nice”’ universal products

Theorem [Speicher, Ghorbal+Schiirmann, Muraki].
There are exactly 3 (non-degenerate) universal products satisfying
the conditions (P1)-(P4), namely

@ The tensor product “®".

@ The free product “x".

@ The boolean product “¢".

There are exactly two more universal products satisfying only
(P2)-(P4), namely

@ The monotone product “>".

@ The anti-monotone product “<".
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Universal products

Definitions of the 5 universal products

Let (A1, 1) and (A2, ¢2) be pairs from ArogF.
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Universal products

Definitions of the 5 universal products

Let (A1, 1) and (A2, ¢2) be pairs from ArogF.

Let further a, ap, ..., a, be elements from A; U A, C A; [] Az,
such that

ai € A = ajy1 € Az, and ai € A, = ajy1 € A

forall iin {1,2,...,n—1}.
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Universal products

Definitions of the 5 universal products

Let (A1, 1) and (A2, ¢2) be pairs from ArogF.

Let further a, ap, ..., a, be elements from A; U A, C A; [] Az,
such that

ae A = ajy1 € A, and a3, € Ay, = aj+1 e A
forall iin {1,2,...,n—1}.

The set of elements of the form ajas - - - a, (subject to the
conditions above) generate A; [ ] A».
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Universal products

Definitions of the 5 universal products

Let (A1, 1) and (A2, ¢2) be pairs from ArogF.

Let further a, ap, ..., a, be elements from A; U A, C A; [] Az,
such that

ae A = ajy1 € A, and a3, € Ay, = aj+1 e A
forall iin {1,2,...,n—1}.

The set of elements of the form ajas - - - a, (subject to the
conditions above) generate A; [ ] A».

Suppose for simplicity of notation that n is odd and that

ai,as,as,...,apn € A1, and as,a4,36,...,an_1 € A>.
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Universal products

Definitions of the 5 universal products

@ The tensor product ¢1 ® > is defined by:

01 @ @a(ataz---an) = ¢i(aiaz---an)p2(azas - --ap—1).
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Universal products

Definitions of the 5 universal products

@ The tensor product ¢1 ® > is defined by:

01 @ @a(ataz---an) = ¢i(aiaz---an)p2(azas - --ap—1).

@ The free product o1 x ¢ is defined recursively by:

prxpa(ama--an) = > ¢ (H a;> (H we(i)(ai))
}

1G{1,2,....,n iel i¢l
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Universal products

Definitions of the 5 universal products

@ The tensor product ¢1 ® > is defined by:

01 @ @a(ataz---an) = ¢i(aiaz---an)p2(azas - --ap—1).

@ The free product o1 x ¢ is defined recursively by:

prxpa(ama--an) = > ¢ (H a;> (H we(i)(ai))
}

1G{1,2,....,n iel i¢l

where E(I) =1+ 12N(i)-
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Universal products

Definitions of the 5 universal products

@ The tensor product ¢1 ® > is defined by:

01 @ @a(ataz---an) = ¢i(aiaz---an)p2(azas - --ap—1).

@ The free product o1 x ¢ is defined recursively by:

prxpa(ama--an) = > ¢ (H a;> (H we(i)(ai))
n}

,,,,, icl i¢l

where E(I) =1+ 12N(i)-

@ The boolean product o1 ¢ 3 is defined by

n
popa(aiar---ap) = H @e(i)(ai)
i=1

= p1(a1)p2(a2)p1(as) - - - pa(an—1)p1(an).



Universal products

Definitions of the 5 universal products

@ The monotone product p10>¢> is defined by

p1>pa(a1az- - an) = 1 H aj H v2(aj)
i e(i)=1 i:e(i)=2

= @1(a1a3- - an)2(a2)2(as) - - - p2(an—1).
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Universal products

Definitions of the 5 universal products

@ The monotone product p10>¢> is defined by

p1>pa(a1az- - an) = 1 H aj H v2(aj)
i e(i)=1 i:e(i)=2

= @1(a1a3- - an)2(a2)2(as) - - - p2(an—1).

@ The anti-monotone product ¢;<1y> is defined by

p1<Ipa(araz- - an) = H p1(ai) | 2 H aj
i e(i)=1 i:e(i)=2

= w1(a1)p1(a3) - p1(an)p2(azaa -~ an-1).
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Universal products

Convolutions associated to e-independence

Suppose o and v are (compactly supported) probability measures
on R.
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Universal products

Convolutions associated to e-independence

Suppose o and v are (compactly supported) probability measures
on R.

Then choose a, b in a NC-probability space (A, ), such that
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Universal products

Convolutions associated to e-independence

Suppose o and v are (compactly supported) probability measures
on R.

Then choose a, b in a NC-probability space (A, ), such that

e alg{a} and alg{b} are e-independent.
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Universal products

Convolutions associated to e-independence

Suppose o and v are (compactly supported) probability measures
on R.

Then choose a, b in a NC-probability space (A, ), such that

e alg{a} and alg{b} are e-independent.
o p(aP) = [, tP pu(dt), and ¢ = Jp tPv(dt) for all p in N.
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Universal products

Convolutions associated to e-independence

Suppose o and v are (compactly supported) probability measures
on R.

Then choose a, b in a NC-probability space (A, ), such that

e alg{a} and alg{b} are e-independent.

o p(aP) = [ tP p(dt), and p(bP) = [ tPv(dt) for all p in N.
Then pdv is the measure defined by:

[ wow)n = o+ 1)
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Universal products

Convolutions associated to e-independence

Suppose o and v are (compactly supported) probability measures
on R.

Then choose a, b in a NC-probability space (A, ), such that

e alg{a} and alg{b} are e-independent.

o p(aP) = [ tP p(dt), and p(bP) = [ tPv(dt) for all p in N.
Then pdv is the measure defined by:

[ wow)n = o+ 1)

Question: Why does this define a measure?
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Universal products

Convolutions associated to e-independence

Suppose o and v are (compactly supported) probability measures
on R.

Then choose a, b in a NC-probability space (A, ), such that

e alg{a} and alg{b} are e-independent.

o p(aP) = [ tP p(dt), and p(bP) = [ tPv(dt) for all p in N.
Then pdv is the measure defined by:

[ wow)n = o+ 1)

Question: Why does this define a measure?

General answer: Represent a and b as selfadjoint operators on a
Hilbert space. Then pv is the spectral distribution of the
selfadjoint operator a + b.



Universal products

Associated notion of infinite divisibility

Infinite divisibility

//’

,_/_f‘/
,_/_/"
,_/‘/"

Convolution LK-repr.

Linearizing transform
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Case study: Boolean Convolution
Boolean cummulants

Let 1 be a (compactly supported) probability measure on R, and
consider the sequence (my(u))ken, of moments for p.
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Case study: Boolean Convolution
Boolean cummulants

Let 1 be a (compactly supported) probability measure on R, and
consider the sequence (my(u))ken, of moments for p.

Then the sequence (rx(1))ken of Boolean cummulants for p is
defined recursively by

Sandbjerg, January 2010



Case study: Boolean Convolution
Boolean cummulants

Let 1 be a (compactly supported) probability measure on R, and
consider the sequence (my(u))ken, of moments for p.

Then the sequence (rx(1))ken of Boolean cummulants for p is

defined recursively by

and

k
Z S (W) -r(p),  (k=2).

iy ip>1
11+ +Ip7k
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Case study: Boolean Convolution
Boolean cummulants

Let 1 be a (compactly supported) probability measure on R, and
consider the sequence (my(u))ken, of moments for p.

Then the sequence (rx(1))ken of Boolean cummulants for p is
defined recursively by

and
k
Z S ) np),  (k>2).
: iy ip>1
i1+ +ip=k
Equivalently,

K
= Z ri(p)me—i(p), (k € N).

i=1
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Case study: Boolean Convolution
Linearizing property

Suppose i and v are (compactly supported) probability measures
on R, and denote by u[Jv their boolean convolution.
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Case study: Boolean Convolution
Linearizing property

Suppose i and v are (compactly supported) probability measures
on R, and denote by u[Jv their boolean convolution.

We then have

re(uOv) = ne(p) + re(v), (k € N).
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Case study: Boolean Convolution
The Boolean cumulant transform

Suppose p and v are (compactly supported) probability measures
on R, and consider the Laurent series:

Gule) = X o)z~ = | 7= utan),
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Case study: Boolean Convolution
The Boolean cumulant transform

Suppose p and v are (compactly supported) probability measures
on R, and consider the Laurent series:

(h&)=§%mdmf”*=iétizuMﬂ,

and

Kuz) = 3 re()z =,

k=1

(e}
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Case study: Boolean Convolution
The Boolean cumulant transform

Suppose p and v are (compactly supported) probability measures
on R, and consider the Laurent series:

Gule) = X o)z~ = | 7= utan),

and -
Ku(2) = ()21,
k=1
Then
(i) Kulz) =2 - —
! a Gu(z)'
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Case study: Boolean Convolution
The Boolean cumulant transform

Suppose p and v are (compactly supported) probability measures
on R, and consider the Laurent series:

Gule) = X o)z~ = | 7= utan),

and -
Ku(2) = ()21,
k=1
Then
(i) Kulz) =2 - —
! a Gu(z)

(i) Kuw(z) = Ku(z) + Ku(2).
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Proof of (i)

Note that
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Case study: Boolean Convolution
Nevalinna-type characterization of K,

For a function K: C* — C the following conditions are equivalent:
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Nevalinna-type characterization of K,

For a function K: C* — C the following conditions are equivalent:

(i) K =K, for some probability measure i on R.
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Case study: Boolean Convolution
Nevalinna-type characterization of K,

For a function K: C* — C the following conditions are equivalent:

(i) K =K, for some probability measure i on R.

(i) There exists a finite measure 7 on R and a real constant a,
such that

K(z) = a +/R lztt: r(dt), (zeCh).
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Case study: Boolean Convolution

All probability measures on R are infinitely

divisible w.r.t. Boolean convolution!

Let i be a probability measure on R, and choose a finite measure 7
on R and a real constant a, such that

K,(z) = a+/RlZ+_ttz r(dt), (zeCH).
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Case study: Boolean Convolution

All probability measures on R are infinitely

divisible w.r.t. Boolean convolution!

Let i be a probability measure on R, and choose a finite measure 7
on R and a real constant a, such that

K,(z) = a+/RlZ+_ttz r(dt), (zeCH).

For nin N, let u, be the probability measure on R such that

1+ ¢
Ku,(z) = nta+ n_l/ Rl
R

7(dt), (zeCh).

z—t
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Case study: Boolean Convolution

All probability measures on R are infinitely

divisible w.r.t. Boolean convolution!

Let i be a probability measure on R, and choose a finite measure 7
on R and a real constant a, such that

K,(z) = a+/RlZ+_ttz r(dt), (zeCH).

For nin N, let u, be the probability measure on R such that

K, (2)=ntat n—l/ LY an,  (zech).
R

z—t

Then for any z in C*

KO- Oy (2) = 3 Kun(2) = 1K, (2) = Ku(2).
N——— j=1

n terms
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Case study: Boolean Convolution

All probability measures on R are infinitely

divisible w.r.t. Boolean convolution!

Let i be a probability measure on R, and choose a finite measure 7
on R and a real constant a, such that

K,(z) = a+/RlZ+_ttz r(dt), (zeCH).

For nin N, let u, be the probability measure on R such that

K, (2)=ntat n—l/ LY an,  (zech).
R

z—t

Then for any z in C*

KO- Oy (2) = 3 Kun(2) = 1K, (2) = Ku(2).
N——— j=1

n terms

By uniqueness of Cauchy transforms, this means that
pnld - - Upn = p.



Case study: Boolean Convolution

The Boolean Central Limit Theorem

Let 1 be a probability measure on R with mean 0 and variance o2,

and for each nin N, let u, be the measure defined by

pn(B) = p(ov/nB), (B € B(R)).
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Case study: Boolean Convolution

The Boolean Central Limit Theorem

Let 1 be a probability measure on R with mean 0 and variance o2,

and for each nin N, let u, be the measure defined by

pn(B) = p(ov/nB), (B € B(R)).

Then 1
e Opp — 5(5,1 +01), asn— 0.
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Case study: Boolean Convolution

Classical and free Lévy-Khintchine representation

A probability measure i on R is infinitely-divisible w.r.t. classical
convolution, if and only if there exists a finite measure o and a real
constant ~ such that

; ut \ 1+ t2
(e —1- ﬁ) %a(dt), (u € R).

log f,(u) =~ + /

R
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Case study: Boolean Convolution

Classical and free Lévy-Khintchine representation

A probability measure i on R is infinitely-divisible w.r.t. classical
convolution, if and only if there exists a finite measure o and a real
constant ~ such that

, ut \ 1+ t2
(e —1- ﬁ) %a(dt), (u € R).

log f,(u) =~ + /

R

A probability measure i on R is infinitely-divisible w.r.t. free
convolution, if and only if there exists a finite measure o and a real
constant v such that

22+ tz
1—tz

zG;g_D(z) —1l=nz —|—/R o(dt).
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