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Independence associated to products Universal products Case study: Boolean Convolution

Non-Commutative probability spaces

Definition. A non-commutative probability space is a pair (A, ϕ),
where

A is a unital algebra.
ϕ : A → C is a linear functional, such that ϕ(111) = 1.

Recall that

An algebra is a vectorspace A, which is equipped with an
associative product (a, b) 7→ a · b : A×A → A, which behaves
nicely in combination with the linear operations, e.g.

a · (b + c) = a · b + a · c for all a, b, c in A.

We do not assume that the product is commutative, i.e.
generally a · b 6= b · a.

We say that A is unital, if there exists a (necessarily unique)
neutral element 111 with respect to the product.
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Independence associated to products Universal products Case study: Boolean Convolution

The category of algebras with linear functionals

By AwF we denote the category of algebras A (over C) equipped
with linear functionals ϕ : A → C.

A “product” in the category AwF is an operation • on AwF in the
form:

(A, ϕ) • (B, ψ) 7→ (A • B, ϕ • ψ).

In addition there are associated canonical embeddings:

ιA : A → A • B, and ιB : B → A • B.
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Independence associated to a product “•”

Consider a product “•” on AwF.

Suppose (A, ϕ) is a NC-probability space and that A1 and A2 are
two subalgebras of A.

Then A1 and A2 are called •-independent, if there exists a
homomorphism h : A1 • A2 → A such that the following diagram
commutes (also at the level of linear functionals):

(A, ϕ)

(A1, ϕ|A1)
ι1 //

* 


j1

77pppppppppppppppppppppppp
(A1 • A2, ϕ|A1 • ϕ|A2)

∃h

OO�
�
�
�
�
�

(A2, ϕ|A2)
ι2oo

4 T

j2

ggNNNNNNNNNNNNNNNNNNNNNNNN
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How classical independence fits into this scheme

Suppose X1 and X2 are two (real-valued) random variables on the
classical probability space (Ω,F ,P).

Consider then the NC-probability space (L∞(Ω,F ,P),E).

Consider also the two subalgebras given by

A1 =
{
f (X1)

∣∣ f ∈ Bb(R)
}

A2 =
{
f (X2)

∣∣ f ∈ Bb(R)
}
.

Assume that A1 and A2 are ⊗-independent, i.e. there exists a
mapping h : A1 ⊗A2 → (L∞(Ω,F ,P),E) such that the following
diagram commutes:
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How classical independence fits into the scheme

(L∞(Ω,F ,P),E)

(A1,E)
ι1 //

+ �

j1

99rrrrrrrrrrrrrrrrrrrrr
(A1 ⊗A2,E⊗ E)

∃h

OO�
�
�
�
�
�

(A2,E)
ι2oo

3 S

j2

eeLLLLLLLLLLLLLLLLLLLLL

Here,

ι1(f (X1)) = f (X1)⊗ 111, and ι2(g(X2)) = 111⊗ g(X2),

and, by necessity,

h
(
f (X1)⊗ g(X2)

)
= f (X1) · g(X2).
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How classical independence fits into the scheme

Note then for f , g in Bb(R) that

E
[
h(f (X1)⊗ g(X2)

)]
= E

[
f (X1) · g(X2)

]

and that

E⊗ E
[
f (X1)⊗ g(X2)

]
= E[f (X1)] · E[g(X2)].

Thus the commutativity of the diagram is equivalent to the
condition:

∀f , g ∈ Bb(R) : E
[
f (X1) · g(X2)

]
= E[f (X1)] · E[g(X2)].
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Co-products of algebras

For two algebras A and B, the co-product A
∐
B is the unique (up

to isomorphism) algebra, satisfying the following universal property:

For any algebra C and any homomorphisms jA : A → C and
jB : B → C, there is a unique homomorphism h : A

∐
B → C such

that the following diagram commutes:

C

A
ιA //

jA

=={{{{{{{{{{{{{{{{{{
A
∐
B

∃!h

OO�
�
�
�
�
�

B
ιBoo

jB

aaCCCCCCCCCCCCCCCCCC

ιA and ιB are canonical embeddings.

The homomorphism h is denoted by jA
∐

jB .
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Universal products of algebras with functionals

A universal product in the category AwF is a product “•” in the
form:

((A1, ϕ1), (A2, ϕ2)) 7→ (A1
∐
A2, ϕ1 • ϕ2).

In this case the product “•” is determined by the operation:

(ϕ1, ϕ2) 7→ ϕ1 • ϕ2.
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Independence associated to a universal product

Suppose A1 and A2 are subalgebras of a NC-probability space
(A, ϕ).

Then the diagram

(A, ϕ)

(A1, ϕ|A1)
ι1 //

* 


j1

77oooooooooooooooooooooooo
(A1

∐
A2, ϕ|A1 • ϕ|A2)

j1
‘

j2

OO�
�
�
�
�
�

(A2, ϕ|A2)
ι2oo

4 T

j2

ggOOOOOOOOOOOOOOOOOOOOOOOO

always commutes at the level of the algebras.

Independence thus amounts to the condition:

ϕ ◦ (j1
∐

j2) = ϕ|A1 • ϕ|A2 .
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Natural conditions to impose on “•”
Consider pairs

(A1, ϕ1), (A2, ϕ2), (A3, ϕ3), (C1, ψ1), (C2, ψ2)

from AwF, and consider further the following natural conditions:

(P1) ϕ1 • ϕ2 = ϕ2 • ϕ1 under the natural identification
A1
∐
A2 ' A2

∐
A1.

(P2) (ϕ1 •ϕ2) •ϕ3 = ϕ1 • (ϕ2 •ϕ3) under the natural identification
(A1

∐
A2)

∐
A3 ' A1

∐
(A2

∐
A3).

(P3) (ϕ1 • ϕ2) ◦ ιi = ϕi , i = 1, 2.

(P4) Suppose we have homomorphisms ji : Ci → Ai , such that
ψi = ϕi ◦ ji , i = 1, 2. Then

(ϕ1 • ϕ2) ◦
(
j1
∐

j2
)

= ψ1 • ψ2.
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(P4) in terms of diagrams:

(C1, ψ1)
ιC1

vvnnnnnnnnnnnn

j1 // (A1, ϕ1)
ιA1

((QQQQQQQQQQQQ

(C2
∐
C2, ψ1 • ψ2)

j1
‘

j2 //________________ (A1
∐
A2, ϕ1 • ϕ2)

(C2, ψ2)

ιC2

hhPPPPPPPPPPPP
j2 // (A2, ϕ2)

ιA2

66mmmmmmmmmmmm
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Independence associated to products Universal products Case study: Boolean Convolution

Characterization of “nice” universal products

Theorem [Speicher, Ghorbal+Schürmann, Muraki].
There are exactly 3 (non-degenerate) universal products satisfying
the conditions (P1)-(P4), namely

The tensor product “⊗”.

The free product “?”.

The boolean product “�”.

There are exactly two more universal products satisfying only
(P2)-(P4), namely

The monotone product “B”.

The anti-monotone product “C”.
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Independence associated to products Universal products Case study: Boolean Convolution

Definitions of the 5 universal products

Let (A1, ϕ1) and (A2, ϕ2) be pairs from AwF.

Let further a1, a2, . . . , an be elements from A1 ∪ A2 ⊆ A1
∐
A2,

such that

ai ∈ A1 ⇒ ai+1 ∈ A2, and ai ∈ A2 ⇒ ai+1 ∈ A1

for all i in {1, 2, . . . , n − 1}.

The set of elements of the form a1a2 · · · an (subject to the
conditions above) generate A1

∐
A2.

Suppose for simplicity of notation that n is odd and that

a1, a3, a5, . . . , an ∈ A1, and a2, a4, a6, . . . , an−1 ∈ A2.
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Definitions of the 5 universal products

The tensor product ϕ1 ⊗ ϕ2 is defined by:

ϕ1 ⊗ ϕ2(a1a2 · · · an) = ϕ1(a1a3 · · · an)ϕ2(a2a4 · · · an−1).

The free product ϕ1 ? ϕ2 is defined recursively by:

ϕ1 ? ϕ2(a1a2 · · · an) =
∑

I${1,2,...,n}

ϕ

( →∏
i∈I

ai

)(∏
i /∈I

ϕε(i)(ai )

)

where ε(i) = 1 + 12N(i).

The boolean product ϕ1 � ϕ2 is defined by

ϕ � ϕ2(a1a2 · · · an) =
n∏

i=1

ϕε(i)(ai )

= ϕ1(a1)ϕ2(a2)ϕ1(a3) · · ·ϕ2(an−1)ϕ1(an).
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Definitions of the 5 universal products

The monotone product ϕ1Bϕ2 is defined by

ϕ1Bϕ2(a1a2 · · · an) = ϕ1

 →∏
i : ε(i)=1

ai

 ∏
i : ε(i)=2

ϕ2(ai )


= ϕ1

(
a1a3 · · · an

)
ϕ2(a2)ϕ2(a4) · · ·ϕ2(an−1).

The anti-monotone product ϕ1Cϕ2 is defined by

ϕ1Cϕ2(a1a2 · · · an) =

 ∏
i : ε(i)=1

ϕ1(ai )

ϕ2

 →∏
i : ε(i)=2

ai


= ϕ1(a1)ϕ1(a3) · · ·ϕ1(an)ϕ2

(
a2a4 · · · an−1

)
.
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Independence associated to products Universal products Case study: Boolean Convolution

Convolutions associated to •-independence
Suppose µ and ν are (compactly supported) probability measures
on R.

Then choose a, b in a NC-probability space (A, ϕ), such that

alg{a} and alg{b} are •-independent.

ϕ(ap) =
∫

R tp µ(dt), and ϕ(bp) =
∫

R tp ν(dt) for all p in N.

Then µ�ν is the measure defined by:∫
R

tp (µ�ν)(dt) = ϕ
(
(a + b)p).

Question: Why does this define a measure?

General answer: Represent a and b as selfadjoint operators on a
Hilbert space. Then µ�ν is the spectral distribution of the
selfadjoint operator a + b.
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Associated notion of infinite divisibility

Infinite divisibility

&&&f&f&f&f&f&f&f&f&f&f&f&f&f&f&f

Convolution

777w7w7w7w7w7w7w7w7w7w7w7w7w7w7w7w

'''g'g'g'g'g'g'g'g'g'g'g'g'g'g'g'g
LK-repr.

Linearizing transform

888x8x8x8x8x8x8x8x8x8x8x8x8x8x8x
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Boolean cummulants

Let µ be a (compactly supported) probability measure on R, and
consider the sequence (mk(µ))k∈N0 of moments for µ.

Then the sequence (rk(µ))k∈N of Boolean cummulants for µ is
defined recursively by

r1(µ) = m1(µ)

and

mk(µ) =
k∑

p=1

∑
i1,...,ip≥1

i1+···+ip=k

ri1(µ)ri2(µ) · · · rip (µ), (k ≥ 2).

Equivalently,

mk(µ) =
k∑

i=1

ri (µ)mk−i (µ), (k ∈ N).
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Linearizing property

Suppose µ and ν are (compactly supported) probability measures
on R, and denote by µ�ν their boolean convolution.

We then have

rk(µ�ν) = rk(µ) + rk(ν), (k ∈ N).
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The Boolean cumulant transform

Suppose µ and ν are (compactly supported) probability measures
on R, and consider the Laurent series:

Gµ(z) =
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mn(µ)z−n−1 =
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R

1
t − z

µ(dt),
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Proof of (i)

Note that

G (z)K (z) =
( ∞∑

n=0

mn(µ)z−n−1
)( ∞∑

k=1

rk(µ)z−k+1
)

=
∞∑
`=1

(∑̀
k=1

rk(µ)ml−k(µ)
)
z−`

=
∞∑
`=1

m`(µ)z−`

= zGµ(z)− 1.

Sandbjerg, January 2010



Independence associated to products Universal products Case study: Boolean Convolution

Nevalinna-type characterization of Kµ

For a function K : C+ → C the following conditions are equivalent:

(i) K = Kµ for some probability measure µ on R.

(ii) There exists a finite measure τ on R and a real constant a,
such that

K (z) = a +

∫
R

1 + tz
z − t

τ(dt), (z ∈ C+).
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Independence associated to products Universal products Case study: Boolean Convolution

All probability measures on R are infinitely
divisible w.r.t. Boolean convolution!

Let µ be a probability measure on R, and choose a finite measure τ
on R and a real constant a, such that

Kµ(z) = a +

∫
R

1 + tz
z − t

τ(dt), (z ∈ C+).

For n in N, let µn be the probability measure on R such that

Kµn(z) = n−1a + n−1
∫

R

1 + tz
z − t

τ(dt), (z ∈ C+).

Then for any z in C+

Kµn� · · ·�µn︸ ︷︷ ︸
n terms

(z) =
n∑

j=1

Kµn(z) = nKµn(z) = Kµ(z).

By uniqueness of Cauchy transforms, this means that

µn� · · ·�µn = µ.
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The Boolean Central Limit Theorem

Let µ be a probability measure on R with mean 0 and variance σ2,
and for each n in N, let µn be the measure defined by

µn(B) = µ(σ
√

nB), (B ∈ B(R)).

Then
µn� · · ·�µn

w−→ 1
2

(δ−1 + δ1), as n→∞.
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Independence associated to products Universal products Case study: Boolean Convolution

Classical and free Lévy-Khintchine representation

A probability measure µ on R is infinitely-divisible w.r.t. classical
convolution, if and only if there exists a finite measure σ and a real
constant γ such that

log fµ(u) = γ +

∫
R

(
eiut − 1− iut

1 + t2

)1 + t2

t2 σ(dt), (u ∈ R).

A probability measure µ on R is infinitely-divisible w.r.t. free
convolution, if and only if there exists a finite measure σ and a real
constant γ such that

zG 〈−1〉
µ (z)− 1 = γz +

∫
R

z2 + tz
1− tz

σ(dt).
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