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Ambit:
1 circuit, compass
2 the bounds or limits of a place or district
3 a sphere of action, expression, or
influence : scope

(Merriam-Webster’s Online Dictionary)
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Addressing Albert Shiryaev’s question:

Nualart–Peccati proved (Ann. Probab. 33 (2005)): Let d ≥ 1 be
fixed and suppose that Fn = Id (fn) are such that EF 2

n = 1 and
limn→∞ EF 4

n = 3. Then Fn
d→ Z , where Z ∼ N(0, 1).

During this workshop A. Shiryaev asked the question: What is
special about the homogeneous chaos space that the normal
relation between the fourth and the second moment of Z makes Z
normal?

We will show that an intuitive explanation why the limit is
Gaussian comes from the structure of independence in the Wiener
chaos space.
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Proposition (JR and G. Samorodnitsky (1999), Corolaries 5.3–5.4)

Let F = Im(f ) and G = In(g) be multiple Itô-Wiener integrals,
m, n ≥ 0. Then

Cov(F 2,G2) ≥ 0.

Moreover, F and G are independent if and only if

Cov(F 2,G2) = 0.

Suppose that instead of the limit we have the equality, EF 4
n = 3, in

the Nualart–Peccati Theorem. Let Gn = Id (gn) be an independent
copy of Fn (this can always be done). Then

Cov((Fn + Gn)2, (Fn − Gn)2) = 2EF 4
n − 6(EF 2

n )2 = 0.

By the above Proposition Fn + Gn ⊥⊥ Fn − Gn, and from Bernstein
Theorem, Fn ∼ N(0, 1).
However, since EF 4

n = 3 only asymptotically, it is natural to expect
that Fn ∼ N(0, 1) also asymptotically. 2

p. 4 of 62



Outline

1. ID distributions - generating triplets
1a. Distributions on Banach spaces
1b. Distributions on cones of Banach spaces

2. ID distributions - moments and large deviations
3. Cylindrical measures and processes - ID and radonification
4. General ID processes
5. Stationary ID processes - ergodic properties
6. Stationary ID processes -decompositions

6.a Stationary symmetric stable processes
6.b Stationary seldecomposable processes

p. 5 of 62



1. ID distributions - generating triplets

1a. Distributions on Banach spaces

E separable Banach space, E ∗ its topological dual;
the duality action is denoted by 〈x , y〉, x ∈ E , y ∈ E ∗.
characteristic function of a Borel probability measure µ on E :

µ̂(y) :=

∫
E
ei〈x ,y〉 µ(dx), y ∈ E ∗.

µ is infinitely divisible (ID) if ∀n ∈ N ∃ pr. m. µn such that
µ = (µn)∗ n

continuous truncation:

[[x ]] =

x if ‖x‖ ≤ 1,
x
‖x‖ if ‖x‖ > 1.
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Theorem (Lévy-Khintchine representation: Dettweiler (1976))

A probability measure µ on E is ID ⇐⇒ ∃ unique triplet (Σ, ν, b)
such that the cumulant of µ is given by

log µ̂(y) = −1
2〈Σy , y〉+

∫
E

(
ei〈x ,y〉 − 1− i〈[[x ]], y〉

)
ν(dx)+ i〈b, y〉

where Σ : E ∗ 7→ E is a nonnegative symmetric operator, ν is a
Borel measure on E such that

∫
〈x , y〉2 ∧ 1 ν(dx) <∞ for each

y ∈ E ∗ and µ({0}) = 0, and b ∈ E.

We write µ = ID(Σ, ν, b) and call Σ the covariance operator of the
Gaussian part of µ, ν the the Lévy measure of µ, and b a shift.

p. 7 of 62



Remarks

For a general Banach space, such as E = C [0, 1], there is no
integrability condition characterizing Lévy measures. In
particular, condition∫

E
‖x‖2 ∧ 1 ν(dx) <∞ (1)

is neither necessary nor sufficient. Also, there is no
operator theory condition characterizing covariance
operators on a general Banach space.
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Remarks (continue)

(1) is sufficient for Lévy measures when E is a Banach
space of type 2 and necessary when E is of cotype 2. The
notions of type and cotype for Banach spaces were
introduced by J. Hoffmann–Jørgensen.

If E = H is a Hilbert space then a measure ν on H with
ν({0}) = 0 is a Lévy measure if and only if it satisfies (1).
A symmetric nonnegative operator Σ : H 7→ H is a
covariance operator if and only if it has summable trace.
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1b. Distributions on cones of Banach spaces

ID distributions on cones lead to rich classes of subordinators in
Banach spaces.

A cone K in E is a closed non-empty set closed under addition and
multiplication by nonnegative reals. A cone K induces a partial
order on E by defining x ≤K y whenever y − x ∈ K .

A cone K in E is normal if for every z ∈ K the set
[0, z ] := {x ∈ K : x ≤K z} is bounded.

The normality of a cone is a natural assumption precluding
pathological situations.
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Let µ be an ID distribution on E concentrated on a normal cone K .

Definition

We say that µ admits the special Lévy-Khintchine representation if

log µ̂(y) =

∫
K

(
ei〈x ,y〉 − 1

)
ν(dx) + i〈b0, y〉,

where b0 ∈ K is called a drift and Lévy measure ν concentrated on
the cone K satisfies

∫
|〈x , y〉| ∧ 1 ν(dx) <∞ for each y ∈ E ∗.
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Skorohod showed that any ID distribution µ concentrated on a
normal cone in Rd has the special Lévy-Khintchine representation.
Is this fact valid in Banach spaces? The answer depends on the
type of cone.

A cone K is said to be regular if every K -increasing and
K -majorized sequence in K is convergent. That is, for any
sequence (xn) ⊂ K and x ∈ K such that xn ≤K xn+1 ≤K x ∀n,
x∞ := limn xn exists.

In a finite dimensional vector space every proper cone is normal
and regular.
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Theorem (V. Perez-Abreu, J.R. (2007))

Let K be a normal cone in a separable Banach space E. TFAE:
Every ID distribution concentrated on K has special the
Lévy-Khintchine representation;
Cone K is regular;
K does not contain an isomorphic copy of the cone c+ of
nonnegative convergent sequences. That is, there is no
isomorphic mapping V of c into E such that Vc+ ⊂ K.

——
This also solves a problem posed by E. Dettweiler (1976).

The existence of special representations characterizes cones, not
Banach spaces. For example, c0 contains both regular and not
regular cones.
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2. ID distributions - moments and large deviations

A function g : E 7→ R+ is said to be log-subadditive if

g(x + y) ≤ Kg(x)g(y) ∀x , y ∈ E .

g is locally bounded when sup‖x‖≤r g(x) <∞, r > 0.

Theorem

Let g : E 7→ R+ be a log-subadditive locally bounded function, and
let X be an ID random variable in E with Lévy measure ν. Then
Eg(X ) <∞ if and only if

∫
{‖x‖>1} g(x) ν(dx) <∞.

For example, g(x) = ‖x‖p (p > 0), g(x) = exp(‖x‖β) (β ∈ (0, 1])
are log-subadditive. But g(x) = exp(‖x‖ log+ ‖x‖) is not.
The case E = Rd can be found in Sato’s book.
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Theorem (JR (1995))

Let X ∼ (0, ν, b) be a random variable in a Banach space E with
Lévy measure ν of bounded support. Assume that ν 6= 0 and let

R := inf{r > 0 : ν{x : ‖x‖ > r} = 0}

and
p := ν{x : ‖x‖ = R}.

Then
E exp

{
R−1‖X‖ log+(α‖X‖)

}
<∞

for every α ∈ (0, 1
epR ). (1/0 =∞.)

Methods: isoperimetric inequalities (see Talangrand (1989)), or
hypercontractivity (see Kwapień-Szulga (1991)), combined with a
technique similar to découpage de Lévy combined with certain
methods of de Acosta.
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Corollary (Large Deviations, JR (1995))

Let X be an ID random variable in E such that Lévy measure has
bounded support and let R be as above. Then

lim
t→∞

P{‖X‖ > t}
t log t = −R−1.
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Theorem (Houdré (2002))

Let X ∼ ID(0, ν, b) be a random variable in E with Lévy measure
ν of bounded support. Let R be as above and V 2 =

∫
E ‖x‖2 ν(dx)

Then for every Lipschitz function f : E 7→ R with ‖f ‖Lip ≤ 1 and
t > 0

P(f (X )− Ef (X ) ≥ t) ≤ exp
{
t
R −

(
t
R +

V 2

R2

)
log
(
1 +

Rt
V 2

)}

Corollary

Under above notation, for every θ < R−1

Eeθ|f (X)| log+ |f (X)| <∞.
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COVARIANCE REPRESENTATION:

Theorem (C. Houdré, V. Pérez-Abreu, D. Surgailis (1998))

Let X ∼ ID(0, ν, b) be a random vector in Rd such that
E‖X‖2 <∞. Let f , g : Rd 7→ R be Lipschitz. Then

Cov(f (X ), g(X ))

=

∫ 1

0
Es

∫
Rd

(f (Y + x)− f (Y ))(g(Z + x)− g(Z )) ν(dx)ds

where the expectation is with respect to probability measure Ps on
R2d such that (Y ,Z ) ∼ ID(0, νs , bs), where bs = (b, b) and
νs = sν1 + (1− s)ν0, s ∈ [0, 1]. Here
ν0(du, dv) = ν(du)δ0(dv) + δ0(du)ν(dv) is concentrated on the
two main ’axes’ of R2d and µ1(du, dv) is the push-forward of ν to
the main diagonal of R2d , (u, u) ∈ R2d .
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Notice that

∀s ∈ [0, 1], under Ps , Y and Z have the same distribution as X

Y ⊥⊥ Z under P0, and

Y = Z under P1.
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Application of the covariance representation for large
deviation estimates

Let f : Rd 7→ R be Lipschitz with ‖f ‖Lip ≤ 1, and let Eet‖X‖ <∞,
t ∈ (0, t0). Let g(x) = etf (x). Assume for a moment that f is
bounded, so that g is also Lipschitz, and that Ef (X ) = 0.

Consider the Laplace transform L(t) of f (X ), L(t) = Eetf (X).

d
dt L(t) = Ef (X )etf (X) = Cov(f (X ), g(X ))
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By the covariance representation

d
dt L(t) =

∫ 1

0
Es

∫
Rd

(f (Y + x)− f (Y ))(etf (Z+x) − etf (Z)) ν(dx)ds

≤
∫ 1

0
Esetf (Z)

∫
Rd
|f (Y + x)− f (Y )|(et|f (Z+x)−f (Z)| − 1) ν(dx)ds

≤
∫ 1

0
Esetf (Z)

∫
Rd
‖x‖(et‖x‖ − 1) ν(dx)ds = L(t)h(t),

where
h(t) :=

∫
Rd
‖x‖(et‖x‖ − 1) ν(dx).

Thus L′(t)

L(t)
≤ h(t), which yields

Eetf (X) = L(t) ≤ exp(

∫ t

0
h(s) ds), t ∈ (0, t0).
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By the standard Crameér method in large deviations

P(f (X ) ≥ a) ≤ exp(−
∫ a

0
h−1(s) ds)

Now once can remove restrictions on f to get

P(f (X )− Ef (X ) ≥ t) ≤ exp(−
∫ t

0
h−1(s) ds).

If ν has bounded support, we can bound h easily to get the tail
bound given on a previous slide (for finite dim spaces and extend
to Banach spaces). It can be applied to other ID random vectors
as well (see Houdré (2002)).

For current results on integrability of seminorms of chaos variables
see Andreas Basse (2009).
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The first moment estimate:

Theorem (M.B. Marcus, JR (2001))

Let X ∼ ID(0, ν, b) be a mean zero random vector in a separable
Hilbert space E. Let ` = `(ν) be a unique solution of the equation∫

E
‖`−1x‖2 ∧ ‖`−1x‖ ν(dx) = 1.

Then
(0.25) `(ν) ≤ E‖X‖ ≤ (2.125) `(ν).

If ν is symmetric, the the upper bound constant can be decreased
to 1.25.
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3. Cylindrical random variables and measures - ID and
radonification

A cylindrical random variable Y in E is a continuous linear map

Y : E ∗ 7→ L0(Ω,F ,P).

Distribution of Y is a cylindrical measure, i.e., a finitely additive
probability measure µ defined on the algebra of cylindrical sets

µ (C(y1, . . . , yn;B)) := P ((Y (y1), . . . ,Y (yn)) ∈ B) ,

where y1, . . . , yn ∈ E ∗, B ∈ B(Rn), n ≥ 1, and

C(y1, . . . , yn;B) := {x ∈ E : (〈x , y1〉, . . . , 〈x , yn〉) ∈ B}.
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A cylindrical measure may become a true measure when pushed
forward to some larger space. If V : E 7→ F is a continuous linear
operator into some separable Banach space F and µ is a cylindrical
measure on E , then push forward cylindrical measure µ ◦ V−1 is
defined by

µ ◦ V−1(C(w1, . . . ,wn;B)) := µ(C(V ∗w1, . . . ,V ∗wn;B)),

for any w1, . . . ,wn ∈ F ∗, B ∈ B(Rn), where V ∗ : F ∗ 7→ E ∗ is the
dual operator.

The operator V is said to be radonifying µ when µ ◦ V−1 has a
unique extension to a probability measure on F .
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In terms of random variables, if Y is a cylindrical random variable
with distribution µ, then V : E 7→ F radonifies µ if and only if
there exists a true random variable X : Ω 7→ F such that ∀w ∈ F ∗

Y (V ∗w) = 〈X ,w〉 a.s.

The operator V is said to be p-radonifying (p ∈ [0,∞)) when it
radonifies any cylindrical probability measure µ with weak p-th
moment: ∫

E
|〈x , y〉|p <∞, ∀y ∈ E ∗.

A celebrated result of S. Kwapień and L. Schwartz show that an
operator is p-radonifying for some p ∈ (1,∞) if and only if it is
p-summing.
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Convolution of cylindrical measures is well defined.
A cylindrical probability measure µ is said to be ID if ∀n ∈ N ∃ a
cylindrical measure µn such that µ = (µn)∗ n.

Corollary

Let µ be a cylindrical measure on E that is the distribution of a
cylindrical random variable Y . Then µ is ID if and only if all finite
dimensional distributions of a stochastic process {Y (y) : y ∈ E ∗}
are ID.

Every cylindrical ID measure has a cylindrical Lévy-Khintchine
representation involving a cylindrical Lévy measure.
—
Badrikian (1970), Dettweiler (1976), . . .
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One can also define cylindrical Lévy process and consider the
related radonification problems.

See, M. Riedle & D. Applebaum (2009), M. Riedle and O. van
Gaans (2009).

Such problems naturally arise in SPDE’s; cf. Peszat - Zabczyk
(2007, book), van Neerven, J.M.A.M., Veraar, M. C. and Weis, L.
(2007).

In this context, a cylindrical semimartingale Y = {Yt}t≥0 on E ∗ is
a continuous linear map

Y : E ∗ 7→ S

where S denotes the space of real semimartingales on a given
filtered probability space, endowed with the Emery topology.
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Theorem (A. Jakubowski, S. Kwapień, P.R. de Fitte, JR (2002))

Let Y = {Yt}t≥0 be a cylindrical semimartingale on E ∗, the dual
to a Banach space E. Suppose that an operator V : E 7→ F can be
factored as V = V1V2, where V1 : E 7→ G and V2 : G 7→ F are
2-radonifying operators for some Banach space G. Then V
radonifies Y ; that is, there exists an F -valued semimaringale
X = {Xt}t≥0, such that for every w ∈ F ∗ the real processes

Yt(V ∗w) = 〈Xt ,w〉, t ≥ 0

are indistinguishable.

If E and F are Hilbert spaces, then the conclusion holds when V is
only a Hilbert-Schmidt operator.

Remark: This solves the 3-operators problem in Hilbert spaces.
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4. General ID processes - generating triplets

Following an analogy with Gaussian processes we define

Definition
Let T be an arbitrary nonempty set. A process X = {Xt}t∈T is
said to be an infinitely divisible (ID) stochastic process if for any
t1, . . . , tn ∈ T the random vector

(Xt1 , . . . ,Xtn )

has an ID distribution.

p. 30 of 62



In the fundamental work Maruyama (1970) defines a cylindrical
Lévy measure of an ID process on RT . Then he extended this
finite additive measure of a countably additive on a special σ-ring
of subsets of RT . Such σ-ring has a complicated structure when
the index set T is uncountable.

However, there is a problem with Maruyama’s proof (pointed to
me by Adam Jakubowski, private communication).
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Notation:

RT = {x : T 7→ R}

The cylindrical σ-field

BT =
∏
t∈T
B (Rt) (Rt = R)

OS := {x ∈ RT : xt = 0 ∀t ∈ S}

Notice that OT /∈ BT , when T is uncountable.

How to define a Lévy measure on RT that would guarantee its
uniqueness?
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Definition
A measure ν on the cylindrical σ-field BT is said to be a Lévy
measure on RT if the following two conditions hold

(i) for every t ∈ T∫
RT

(
|xt |2 ∧ 1

)
ν(dx) <∞

(ii) for every A ∈ BT there exists a countable set
TA ⊂ T such that

ν(A) = ν(A \OTA).
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Remark

If T is a countable index set, then condition (ii) is equivalent to

ν{OT} = 0.

Proof: Assume T is countable. If (ii) holds then for A = OT

ν(OT ) = ν(OT \OTA) ≤ ν(OT \OT ) = 0.

If ν(OT ) = 0 then we always take TA = T . 2
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Remark

Suppose that condition (i) holds and
(iii) ∃ a countable set T0 ⊂ T such that

ν{OT0} = 0.

Then ν is a Lévy measure.

Proposition

A Lévy measure is σ-finite if and only if condition (iii) holds.
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Theorem (Lévy-Khintchine representation)
Let X = {Xt}t∈T be an infinitely divisible stochastic process. Then
there exist a unique generating triplet (Σ, ν, b) consisting of
(i) a nonnegative symmetric operator Σ : R(T ) 7→ RT ,
(ii) a Lévy measure ν on RT ,
(iii) a function b ∈ RT ,
such that for any y ∈ R(T )

logE exp(i
∑
t∈T

ytXt) =

− 1
2〈y ,Σy〉+

∫
RT

(
ei〈y ,x〉 − 1− i〈y , [[x ]]〉

)
ν(dx) + i〈y , b〉.

Here 〈y , x〉 =
∑

t∈T ytxt , [[x ]]t = xt/(|xt | ∨ 1), x ∈ RT , y ∈ R(T );
R(T ) is the set of functions from T to R with finite support.
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Remarks about the proof:

For any finite set Γ ⊂ T , XΓ = {Xt}t∈Γ is an ID random vector in
finite dimensional space RΓ. Thus it has the generating triplet
(ΣΓ, νΓ, bΓ). The families

{ΣΓ : finite Γ ⊂ T} and {bΓ : finite Γ ⊂ T}

are consistent and produce immediately Σ : R(T ) 7→ RT and
b ∈ RT , respectively. However,

{νΓ : finite Γ ⊂ T}

does not constitute a projective system of measures in the usual
sense. For example, if T = {1, 2}, ν{1,2} = δ(0,1), then ν{1} = 0 is
not a projection of δ(0,1) onto the first axis. Thus results on limits
of projective systems of measures do not apply, which is the main
difficulty.
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EXAMPLES OF LÉVY MEASURES FOR PROCESSES:

1. Lévy processes.
X = {Xt}t≥0 be a Lévy process with

EeiuXt = etψ(u),

ψ(u) =

∫ ∞
−∞

(eiuv − 1− iu[[v ]]) η(dv).

Here T = R+. What is the Lévy measure ν of X on the path
space RR+?
ANSWER: Path Lévy measure ν of a Lévy process X is the
push-forward measure of η × Leb by the map

R× R+ 3 (v , s) 7→ v1[s,∞) ∈ RR+ .
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Therefore, path Lévy measure of a Lévy process is concentrated on
the set of one-step functions

S := {v1[s,∞) : v ∈ R, s ≥ 0}.

(Precisely, ν∗(RR+ \ S) = 0.)

Actually, an ID process X = {Xt}t≥0 with the generating triplet
(0, ν, b) has independent increments if and only if the support of ν
is included in S.

This indicates the richness of the class of ID processes.
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For a Poisson process with parameter λ,

supp ν = {1[s,∞) : s ≥ 0}

and ν is the image measure of (λδ1)× Leb by the map

s 7→ 1[s,∞)

Bad properties such as discontinuities, non differentiability, etc,
of sample paths of an ID process are inherited from the corresponding
properties of the support of its Lévy measure.

For a precise statement see JR (1989).
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2. ID point processes.
Let N be an ID point process on Rd . Thus,

{N(A) : A ∈ B0(Rd )}

is an ID process indexed by bounded Borel subsets of Rd . Its Lévy
measure ν is obtained on the cylindrical σ-field of RB0(Rd ).
It can be shown that ν is concentrated on NRd , the space of
nonnegative integer-valued measures, finite on bounded Borel sets.

The restriction of ν to NRd is known as KLM measure of N.
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Benefits of having generating triplets on path spaces:

possibility of constructing various series representations of
processes which are crucial in the study of sample path
properties
availability of stochastic integral representations resulting
from various representations of the path Lévy measure; e.g.,
Itô-Lévy representation of any ID process
unified approach, parametrization
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5. Stationary ID processes - ergodic properties

Definition
Let T = Zn or Rn. A stochastic processes {Xt}t∈T is said to be
stationary if ∀ h ∈ T

{Xt+h}t∈T
d
= {Xt}t∈T .

If {Xt}t∈T is ID with generating triplet (0, ν, b), then stationarity
of the process is equivalent that ν is invariant under the shift and
b is a constant on T .
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Here T = Z or R.

Theorem (JR and T. Żak (1996))

Let {Xt}t∈T be a stationary ID process such that the Lévy measure
of X0 has no atoms in 2nZ. Then {Xt}t∈T is mixing if and only if

lim
t→∞

Eei(Xt−X0) = |EeiX0 |2.
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Codifference: ρ(t) = logEei(Xt−X0) − logEeiXt − logEe−iX0 .
It it the covariance function for Gaussian processes.

Corollary

Under the assumptions of the previous theorem, {Xt}t∈T is mixing
if and only if ρ(t)→ 0 as t →∞.
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Theorem

Let {Xt}t∈T be a stationary ID process. Then the process is
ergodic if and only if it is weakly mixing.

Corollary

{Xt}t∈T is ergodic (equivalently, weakly mixing) if and only if

lim
t→∞

t−1
∫ t

0
|ρ(s)| ds = 0,

where ρ is the codifference function of the process.
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6. Stationary ID processs - decompositions
6.a. Stationary symmetric stable processes

Theorem (JR (1995))
{Xn}n∈Z is a stationary SαS process if and only if there exist an
SαS noise Λ on a Borel subset S of Rd equipped with a σ-finite
control measure λ such that for every n ∈ Z

Xn =

∫
S
an(s)

(dλ ◦ φn

dλ (s)

)1/α
f ◦ φn(s) Λ(ds) a.s.

Here φ : S 7→ S is a nonsingular bijection, {an} is a sequence of
{−1, 1}-valued functions satisfying

an+1(s) = an(φ(s))a1(s), n ∈ Z, s ∈ S,

and f ∈ Lα(S, λ).

(For the case T = Zd or Rd see JR (2000)).
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By the recurrence structure we get:

an =
n−1∏
j=0

u ◦ φj , n ∈ Z+

where u = a1 is a {−1, 1}-valued measurable function on S and

dλ ◦ φn

dλ =
n−1∏
j=0

v ◦ φj , n ∈ Z+

where v = dλ◦φ
dλ .

Therefore, a stationary SαS process is determined by (φ, f , u). The
most important is φ.
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Long run behavior of the deterministic flow

{φn}n∈Z

determines long range dependence of the process {Xn}.

Decompositions of the flow introduce decompositions of the
stationary stable process into independent parts with different
dependence structures and different ergodic behavior.

For example, Hopf decomposition of the flow into conservative and
dissipative parts distinguishes long range dependent, generally non
ergodic part of a stable process and an independent, generally
short range dependent mixing part. See JR (1995) for processes,
and (2000) for random fields. Extensions of these ideas to stable
processes and fields were obtained by S. Kolodynski and JR
(2002), Pipiras and Taqqu (2002), JR and G. Samorodnitsky
(1996), G. Samorodnitsky (2004), (2005), P. Roy and G.
Samorodnitsky (2008), P. Roy (2010), and more.
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6.b Stationary seldecomposable processes

Any stationary mean-zero selfdecomposable process {Xn}n∈Z can
be represented as

Xn =

∫ ∞
0

g(V n(t)) dZt , n ∈ Z

where V : R+ 7→ R+ is a Lebesgue measure preserving
transformation of R+ and {Zt}t≥0 is a Lévy process with

EeiuXt = etψ(u),

where ψ(u) =
∫ 1

0 (eiux − 1− iux)x−1 dx .
Thus {Xn} can be viewed as a process in the first order chaos of
{Zt}t≥0.
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Theorem

Every stationary zero mean selfdecomposable process {Xn}n∈Z can
be written uniquely in distribution as the sum

Xn =
4∑

i=0
X (i)

n , n ∈ Z,

where {X (i)
n }n∈Z, i = 0, . . . , 4 are independent stationary zero

mean selfdecomposable process (some may be zero) such that
(0) {X (0)

n }n∈Z has constant paths;
(1) {X (1)

n }n∈Z is not ergodic;
(2) {X (2)

n }n∈Z is weakly mixing (and so ergodic) but not mixing;
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Theorem (continue)

(3) {X (3)
n }n∈Z is mixing and does not have mixed moving average

component;
(4) {X (4)

n }n∈Z is a mixed moving average process.
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D. Nualart and Schoutens (2000) gave a chaotic decomposition of
L2(Ω, σ(Zt , t ≥ 0),P) as

∞⊕
n=0

⊕
i1,...,in∈N

H(i1,...,in),

where H(i1,...,in) are spaces of multiple stochastic integrals with
respect to strongly orthogonal Teugels martingales Y (i)

t , t ≥ 0.
Such martingales are obtained by applying orthogonal polynomials
to powers of jumps of Zt , t ≥ 0.
Orthogonal polynomials related to a selfdecomposable Lévy process
Zt , t ≥ 0 can be given explicitely. These are orthogonal
polynomials of L2([0, 1], xdx),

pn(x) =
n∑

k=0
(−1)n−k

(
n
k

)(
n + k + 1

n

)
xk .
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pn(x) = P(0,1)
n (2x − 1) ← Jacobi polynomial.

p0(x) = 1 p1(x) = 3x − 2
p2(x) = 10x2 − 12x + 3 p3(x) = 35x3 − 60x2 + 30x − 4
p4(x) = 126x4 − 280x3 + 210x2 − 60x + 5

∫ 1

0
pn(x)2 xdx =

1
2(n + 1)

.

{
√
2(n + 1) pn : n ≥ 0} is a CONS for L2([0, 1], xdx).

Transformation V of R, corresponding to the shift on RZ,
generates an isometry on each chaos space H(i1,...,in). Ergodic
decomposition of V induces related ergodic decompositions in the
space of chaos of selfdecomposable processes.
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