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Introduction

Let E be a separable metric space and µ : B(E )→ [0, 1] a
Borel probability measure.

Definition (Support)

We say that the support of µ is the smallest closed set A ⊂ E such
that µ(A) = 1. We denote this set by supp(µ).

Definition (Full support)

We say that µ has full support if supp(µ) = E .
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Introduction

Let (Xt)t∈[0,T ] be a continuous process in some interval
I ⊂ R, defined on a complete probability space (Ω,F ,P).

Denote by Cx([u, v ], I ) the family of functions f ∈ C ([u, v ], I )
s.t. f (u) = x ∈ I .

Definition (Conditional full support)

The process X has conditional full support (CFS) with respect to
filtration F = (Ft)t∈[0,T ] if

1 X is adapted to F,

2 for all t ∈ [0,T ) and P-almost all ω ∈ Ω,

supp
(
Law

[
(Xu)u∈[t,T ]

∣∣Ft

]
(ω)
)

= CXt(ω)([t,T ], I ).

For price processes I = R+, otherwise I = R. Conventionally
F = FX (the usual augmentation).
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Why CFS is worth studying

Pricing models with transaction costs

Guasoni, Rásonyi and Schachermayer (2008), henceforth GRS,
have shown that if a price process has CFS, then it is free
from arbitrage under arbitrarily small transaction costs.

Additionally, CFS facilitates solving superreplication problems
under small proportional transaction costs.

More precisely, GRS have shown that if price process
(Pt)t∈[0,T ] has CFS, then the superreplication price of a
European (vanilla) contingent claim g(PT ) under ε-sized
proportional transaction costs tends to

ĝ(P0) when ε ↓ 0,

where ĝ is the concave envelope of g .
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Guasoni, Rásonyi and Schachermayer (2008), henceforth GRS,
have shown that if a price process has CFS, then it is free
from arbitrage under arbitrarily small transaction costs.

Additionally, CFS facilitates solving superreplication problems
under small proportional transaction costs.

More precisely, GRS have shown that if price process
(Pt)t∈[0,T ] has CFS,

then the superreplication price of a
European (vanilla) contingent claim g(PT ) under ε-sized
proportional transaction costs tends to

ĝ(P0) when ε ↓ 0,
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Why CFS is worth studying

Frictionless pricing models

Bender, Sottinen, and Valkeila (2008) have shown that if a
price process has CFS and well-defined pathwise quadratic
variation, then it admits no arbitrage opportunities in a wide
class of trading strategies.

Beyond mathematical finance?

CFS appears to be a rather fundamental property that might
be worth studying also from a purely mathematical point of
view.

. . .
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Processes that have CFS

Gaussian processes

Fractional Brownian motion with H ∈ (0, 1) (GRS),

Brownian moving averages (Cherny, 2008),

Continuous Gaussian processes with stationary increments
satisfying a certain spectral density condition (Gasbarra,
Sottinen, and van Zanten, 2008).

Markov processes

Certain diffusions (Stroock and Varadhan, 1972; GRS).

Other

Riemann integrals of processes with CFS (GRS).

6 / 18



Processes that have CFS

Gaussian processes

Fractional Brownian motion with H ∈ (0, 1) (GRS),

Brownian moving averages (Cherny, 2008),

Continuous Gaussian processes with stationary increments
satisfying a certain spectral density condition (Gasbarra,
Sottinen, and van Zanten, 2008).

Markov processes

Certain diffusions (Stroock and Varadhan, 1972; GRS).

Other

Riemann integrals of processes with CFS (GRS).

6 / 18



Processes that have CFS

Gaussian processes

Fractional Brownian motion with H ∈ (0, 1) (GRS),

Brownian moving averages (Cherny, 2008),

Continuous Gaussian processes with stationary increments
satisfying a certain spectral density condition (Gasbarra,
Sottinen, and van Zanten, 2008).

Markov processes

Certain diffusions (Stroock and Varadhan, 1972; GRS).

Other

Riemann integrals of processes with CFS (GRS).

6 / 18



Processes that have CFS

Gaussian processes

Fractional Brownian motion with H ∈ (0, 1) (GRS),

Brownian moving averages (Cherny, 2008),

Continuous Gaussian processes with stationary increments
satisfying a certain spectral density condition (Gasbarra,
Sottinen, and van Zanten, 2008).

Markov processes

Certain diffusions (Stroock and Varadhan, 1972; GRS).

Other

Riemann integrals of processes with CFS (GRS).

6 / 18



Processes that have CFS

Gaussian processes

Fractional Brownian motion with H ∈ (0, 1) (GRS),

Brownian moving averages (Cherny, 2008),

Continuous Gaussian processes with stationary increments
satisfying a certain spectral density condition (Gasbarra,
Sottinen, and van Zanten, 2008).

Markov processes

Certain diffusions (Stroock and Varadhan, 1972; GRS).

Other

Riemann integrals of processes with CFS (GRS).

6 / 18



Some characterizations of CFS

Proposition (Small-ball probabilities)

Let (Xt)t∈[0,T ] be a continuous process in R, adapted to filtration
F = (Ft)t∈[0,T ].

Then, X has CFS w.r.t. F if and only if

P

[
sup

u∈[t,T ]
|Xu − Xt − f (u)| < ε

∣∣∣∣Ft

]
> 0 P-a.s.

for all t ∈ [0,T ), f ∈ C0([t,T ],R), and ε > 0.
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Some characterizations of CFS

Intuitively, this characterization means that for every
t ∈ [0,T ), f ∈ C0([t,T ],R), ε > 0, and for almost every
“past”, the following event occurs with a positive
Ft-conditional probability:

u
t T

X
·

f + Xt

ε
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Some characterizations of CFS

Proposition (Usual augmentation)

Again, let (Xt)t∈[0,T ] be a continuous process in I ⊂ R, adapted to
filtration F = (Ft)t∈[0,T ].

Then, X has CFS w.r.t. F if and only if
it has CFS w.r.t. the usual augmentation of F.

Proposition (Law invariance)

Let (Xt)t∈[0,T ] and (Yt)t∈[0,T ] be continuous processes in I ⊂ R,

such that X
law
= Y . Then, X has CFS w.r.t. FX if and only if Y

has CFS w.r.t. FY .
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Main results: CFS for certain stochastic integrals

Theorem (Independent integrands and Brownian integrators)

Suppose that

(Ht)t∈[0,T ] is a continuous process,

(kt)t∈[0,T ] is a measurable process s.t.
∫ T
0 k2

s ds <∞, and

(Wt)t∈[0,T ] is a standard Brownian motion independent of H
and k.

Let us define

Zt := Ht +

∫ t

0
ksdWs , t ∈ [0,T ].

If we have

meas({t ∈ [0,T ] : kt = 0}) = 0 P-a.s.,

then Z has CFS.
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Main results: CFS for certain stochastic integrals

Remark

By Fubini’s theorem, it suffices that kt 6= 0 a.s. for all t ∈ [0,T ].

Remark

The assumption about independence between W and (H, k)
cannot be dispensed with in general without imposing additional
conditions. Namely, if e.g.

Ht := 1, kt := eWt− 1
2
t , t ∈ [0,T ],

then Z = k = E (W ), the Doléans exponential of W , which is
stricly positive and thus does not have CFS, if understood as a
process in R.
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Application to some stochastic volatility models

General stochastic volatility (SV) model

Let us consider price process (Pt)t∈[0,T ] in R+ given by

dPt = Pt

(
f (t,Vt)dt + ρg(t,Vt)dBs +

√
1− ρ2g(t,Vt)dWs

)
,

P0 = p0 ∈ R+,

where

f , g ∈ C ([0,T ]× Rd ,R),

(B,W ) is a planar Brownian motion,

ρ ∈ (−1, 1),

V is a (measurable) process in Rd s.t. g(t,Vt) 6= 0 a.s. for all
t ∈ [0,T ],

(B,V ) is independent of W ,

but V may depend on B.
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Application to some stochastic volatility models

General stochastic volatility (SV) model

To see why P has CFS,

write using Itô’s formula:

log Pt

= log p0 +

∫ t

0

(
f (s,Vs)− 1

2
g(s,Vs)2

)
ds +

∫ t

0
ρg(s,Vs)dBs︸ ︷︷ ︸

=:Ht

+

∫ t

0

√
1− ρ2g(s,Vs)︸ ︷︷ ︸

=:ks

dWs .

Since W is independent of B and V , the previous Theorem implies
that log P has CFS—from which it follows that P has CFS (when
P is seen as a process in R+).
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Application to some stochastic volatility models

Some well-known special cases of the general SV model

V is a diffusion (Heston [leverage], Hull–White, Scott,
Stein–Stein, Wiggins),

V is a non-semimartingale (Comte–Renault [long memory in
volatility]),

V is discontinuous (Barndorff-Nielsen–Shephard
[subordinator-driven volatility], Guo [regime switching]).
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Main results: CFS for certain stochastic integrals

Theorem (Progressive integrands and Brownian integrators)

Suppose that

(Yt)t∈[0,T ] and (Wt)t∈[0,T ] are continuous processes,

h and k are progressive maps [0,T ]× C ([0,T ],R)2 → R,

ξ is a random variable,

and Ft := {ξ,Ys ,Ws : s ∈ [0, t]}.
If W is an (Ft)t∈[0,T ]-Brownian motion and

|h(·)| ≤ h, k
−1 ≤ |k(·)| ≤ k for some h > 0 and k > 1,

then

Zt := ξ +

∫ t

0
h(s,Y ,W )ds +

∫ t

0
k(s,Y ,W )dWs , t ∈ [0,T ]

has CFS.
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Application to stochastic differential equations

Weak solutions of stochastic differential equations

Let us consider price process (Pt)t∈[0,T ] in R+ given by

dPt = µ(t,P)dt + σ(t,P)dWt , P0 = p0 ∈ R+,

where µ and σ are progressive maps [0,T ]× C ([0,T ],R+)2 → R.

We assume that

there exist µ > 0 and σ > 1 such that

|µ(t, x)| ≤ µx(t), σ−1x(t) ≤ |σ(t, x)| ≤ σx(t)

for all x ∈ Cp0([0,T ],R+) and t ∈ [0,T ],

the equation has at least a weak solution.

Setting Y := P, we find that the previous Theorem applies to
log P, and hence that P has CFS (similarly as with the SV model).
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Main results: CFS for certain stochastic integrals

Theorem (Independent integrands and general integrators)

Suppose that

(Ht)t∈[0,T ] is a continuous process,

(kt)t∈[0,T ] is a process of finite variation, and

(Xt)t∈[0,T ] is a continuous process independent of H and k.

Let us define

Zt := Ht +

∫ t

0
ksdXs , t ∈ [0,T ].

If X has CFS and

inf
t∈[0,T ]

|kt | > 0 P-a.s.,

then Z has CFS.
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