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m For price processes | = R, otherwise | = R. Conventionally
F = FX (the usual augmentation).
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Pricing models with transaction costs

m Guasoni, Rasonyi and Schachermayer (2008), henceforth GRS,
have shown that if a price process has CFS, then it is free
from arbitrage under arbitrarily small transaction costs.

m Additionally, CFS facilitates solving superreplication problems
under small proportional transaction costs.

m More precisely, GRS have shown that if price process
(Pt)tefo, 7] has CFS, then the superreplication price of a
European (vanilla) contingent claim g(Pr) under e-sized
proportional transaction costs tends to

g(Py) whene |0,

where g is the concave envelope of g.



Why CFS is worth studying

Frictionless pricing models

m Bender, Sottinen, and Valkeila (2008) have shown that if a
price process has CFS and well-defined pathwise quadratic
variation, then it admits no arbitrage opportunities in a wide
class of trading strategies.




Why CFS is worth studying

Frictionless pricing models

m Bender, Sottinen, and Valkeila (2008) have shown that if a
price process has CFS and well-defined pathwise quadratic
variation, then it admits no arbitrage opportunities in a wide
class of trading strategies.

Beyond mathematical finance?

m CFS appears to be a rather fundamental property that might

be worth studying also from a purely mathematical point of
view.



Why CFS is worth studying

Frictionless pricing models

m Bender, Sottinen, and Valkeila (2008) have shown that if a
price process has CFS and well-defined pathwise quadratic
variation, then it admits no arbitrage opportunities in a wide
class of trading strategies.

Beyond mathematical finance?

m CFS appears to be a rather fundamental property that might

be worth studying also from a purely mathematical point of
view.



Processes that have CFS

Gaussian processes

m Fractional Brownian motion with H € (0,1) (GRS),

6/18



Processes that have CFS

Gaussian processes

m Fractional Brownian motion with H € (0,1) (GRS),

m Brownian moving averages (Cherny, 2008),

6/18



Processes that have CFS

Gaussian processes

m Fractional Brownian motion with H € (0,1) (GRS),

m Brownian moving averages (Cherny, 2008),

m Continuous Gaussian processes with stationary increments
satisfying a certain spectral density condition (Gasbarra,
Sottinen, and van Zanten, 2008).

6/18



Processes that have CFS

m Fractional Brownian motion with H € (0,1) (GRS),

m Brownian moving averages (Cherny, 2008),

m Continuous Gaussian processes with stationary increments
satisfying a certain spectral density condition (Gasbarra,
Sottinen, and van Zanten, 2008).

Markov processes

m Certain diffusions (Stroock and Varadhan, 1972; GRS).

6/18



Processes that have CFS

m Fractional Brownian motion with H € (0,1) (GRS),

m Brownian moving averages (Cherny, 2008),

m Continuous Gaussian processes with stationary increments
satisfying a certain spectral density condition (Gasbarra,
Sottinen, and van Zanten, 2008).

Markov processes

m Certain diffusions (Stroock and Varadhan, 1972; GRS).

m Riemann integrals of processes with CFS (GRS).
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Some characterizations of CFS

Proposition (Usual augmentation)

Again, let (Xt):ejo, 1) be a continuous process in | C R, adapted to
filtration ¥ = (%¢)¢cjo,1)- Then, X has CFS w.r.t. F if and only if
it has CFS w.r.t. the usual augmentation of F.

Proposition (Law invariance)

Let (Xt)teqo, 1 and (Yt)eejo, 1] be continuous processes in | C R,

law

such that X = Y. Then, X has CFS w.r.t. FX if and only if Y
has CFS w.r.t. FY.
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Suppose that

m (Ht)eepo,7 is @ continuous process,

® (kt)eejo, 7] is @ measurable process s.t. foT k2ds < oo, and

m (W;)ecpo, 1] is @ standard Brownian motion independent of H
and k.

Let us define
Z = Ht+/0tkde5, te[o, 7]
If we have
meas({t € [0, T] : ks =0}) =0 P-as,

then Z has CFS.
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Main results: CFS for certain stochastic integrals

By Fubini's theorem, it suffices that k; # 0 a.s. for all t € [0, T].

RENEILS

The assumption about independence between W and (H, k)
cannot be dispensed with in general without imposing additional
conditions. Namely, if e.g.

Ht = ]-7 kt = eWtiéta te [07 T]7

then Z = k = &(W), the Doléans exponential of W, which is
stricly positive and thus does not have CFS, if understood as a
process in R.

11/18



Application to some stochastic volatility models

General stochastic volatility (SV) model

Let us consider price process (Pt)cpo,7] in R4 given by

dPy = P (f(t, Ve)dt + pg(t, Ve)dBs + /1 — p2g(t, Vi )dWs),
Po = po € Ry,



Application to some stochastic volatility models

General stochastic volatility (SV) model

Let us consider price process (Pt)cpo,7] in R4 given by

dPy = P (f(t, Ve)dt + pg(t, Ve)dBs + /1 — p2g(t, Vi )dWs),
Po = po € Ry,

where

= f,g € C([0, T] x RY,R),



Application to some stochastic volatility models

General stochastic volatility (SV) model

Let us consider price process (Pt)cpo,7] in R4 given by
dPy = P (f(t, Ve)dt + pg(t, Ve)dBs + /1 — p2g(t, Vi )dWs),
Po=po € Ry,

where
mf,ge C(0, T] x Rd,R),

m (B, W) is a planar Brownian motion,



Application to some stochastic volatility models

General stochastic volatility (SV) model

Let us consider price process (Pt)cpo,7] in R4 given by

dPy = P (f(t, Ve)dt + pg(t, Ve)dBs + /1 — p2g(t, Vi )dWs),
Po = po € Ry,

where
m f,g e C([0, T] x RY,R),
m (B, W) is a planar Brownian motion,
mpe(—1,1),



Application to some stochastic volatility models

General stochastic volatility (SV) model

Let us consider price process (Pt)cpo,7] in R4 given by

dPy = P (f(t, Ve)dt + pg(t, Ve)dBs + /1 — p2g(t, Vi )dWs),
Po = po € Ry,

where
m f,g e C([0, T] x RY,R),
m (B, W) is a planar Brownian motion,
mpe(—1,1),
m V is a (measurable) process in RY s.t. g(t, V;) # 0 a.s. for all
te[0,T],



Application to some stochastic volatility models

General stochastic volatility (SV) model

Let us consider price process (Pt)cpo,7] in R4 given by

dPy = P (f(t, Ve)dt + pg(t, Ve)dBs + /1 — p2g(t, Vi )dWs),
Po = po € Ry,

where
m f,g e C([0, T] x RY,R),
m (B, W) is a planar Brownian motion,
mpe(—1,1),
m V is a (measurable) process in RY s.t. g(t, V;) # 0 a.s. for all
te[0,T],
m (B, V) is independent of W,



Application to some stochastic volatility models

General stochastic volatility (SV) model

Let us consider price process (Pt)cpo,7] in R4 given by

dPy = P (f(t, Ve)dt + pg(t, Ve)dBs + /1 — p2g(t, Vi )dWs),
Po = po € Ry,

where
m f,g € C([0, T] x R, R),
m (B, W) is a planar Brownian motion,
mpe(—1,1),
m V is a (measurable) process in RY s.t. g(t, V;) # 0 a.s. for all
te[0,T],
m (B, V) is independent of W,
m but V may depend on B.
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To see why P has CFS, write using Itd’s formula:

log P
t 1 5 t
—togpn + [ (£, V) = (s, Ve s+ [ pa(s, v
0 0
:ZHt
t
—1—/ V1—p2g(s, Vs)dW;.
0

—:ks
Since W is independent of B and V/, the previous Theorem implies
that log P has CFS—from which it follows that P has CFS (when

P is seen as a process in R, ).

13 /18
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Some well-known special cases of the general SV model

m V is a diffusion (Heston [leverage], Hull-White, Scott,
Stein—Stein, Wiggins),

m V is a non-semimartingale (Comte—Renault [long memory in
volatility]),

m V is discontinuous (Barndorff-Nielsen—Shephard
[subordinator-driven volatility], Guo [regime switching]).
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m h and k are progressive maps [0, T] x C([0, T],R)? — R,
m £ is a random variable,
m and F ={,, Ys, Ws : s €0, t]}.
If W is an (Zt):ejo, 7)-Brownian motion and

|h(-)| < h, o < |k(:)| £ k for some h >0 and k > 1,

then

t

t
Z: :_§+/ h(s, Y, W)ds+/ k(s,Y,W)dW,, te][o,T]
0 0

has CFS.
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We assume that

m there exist £ > 0 and @ > 1 such that
u(t, )| < Ex(t), T 'x(t) < |o(t, x)| < ox(t)

for all x € Cpy([0, T],Ry) and t € [0, T],
m the equation has at least a weak solution.

Setting Y := P, we find that the previous Theorem applies to
log P, and hence that P has CFS (similarly as with the SV model).
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m (kt)eejo, 7] is @ process of finite variation, and
[ (Xt)te[o,T] is a continuous process independent of H and k.

Let us define
t
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0

If X has CFS and

|nf |kt|>0 P-a.s.,

then Z has CFS.
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