Generalized fractional Lévy processes ¹

Claudia Klüppelberg Center for Mathematical Sciences and Institute for Advanced Study Technische Universität München

Sandbjerg, January 2010

¹joint work with Muneya Matsui, Keio University, Japan partly extends work by Tina Marquardt; cf. also joint work with Hølger Fink ≥ → ≥ ✓ < ○

Motivation from stochastic volatility models

As limit models, for standard Brownian motion B and fractional Brownian motion B^H ($H \in (0, 1/2)$), we consider types of models

$$dz(t) = (\mu + \beta v(t))dt + \sqrt{v(t)}dB(t),$$

$$v(t) = f(y(t)) \text{ for } f : \mathbb{R} \to \mathbb{R}_+ \text{ and}$$

$$dy(t) = -\lambda y(t)dt + dB^H(t), \quad \lambda > 0,$$

and

$$dz(t) = (\mu + \beta v(t))dt + v(t)dB(t)$$

$$d(\log v(t)) = -\lambda \log v(t)dt + \sigma dB^{H}(t).$$

Generalized fractional Lévy processes

Throughout: L is a two-sided centered, finite variance Lévy process, no Gaussian component and Lévy measure ν .

W.l.o.g.: $E[(L(t))^2] = tE[(L(1))^2] = t \int_{\mathbb{R}} x^2 v(dx) = t \text{ for all } t \ge 0.$ Recall, $E[\exp\{i\theta L(t)\}] = \exp\{t\psi(\theta)\}$ for $t \ge 0$, where

$$\psi(\theta) = \int_{\mathbb{R}} (e^{i\theta x} - 1 - i\theta x) \nu(dx), \quad \theta \in \mathbb{R}.$$
 (1)

Definition Let $g: \mathbb{R}_+ \to \mathbb{R}_+$ with g(0) = 0 and such that $\int_{\mathbb{R}} \{g((t-s)_+) - g((-s)_+)\}^2 ds < \infty$ for all $t \in \mathbb{R}$. Then

$$S(t) = \int_{\mathbb{R}} \{g((t-u)_{+}) - g((-u)_{+})\} dL(u), \quad t \in \mathbb{R},$$
 (2)

is called generalized fractional Lévy process (GFLP).

Example Define $g(t) = t^{H-\frac{1}{2}}$, then S is a fractional Lévy process.

For x > 0 let $\sigma^2(x) := \text{Var}[S(x)]$ and define the **time scaled GFLP**

$$S_x(t) := \frac{S(xt)}{\sigma(x)}, \quad t \in \mathbb{R}.$$

Define

$$\tilde{\Gamma}_x(s,t) = \frac{\text{Cov}[S(xs), S(xt)]}{\sigma^2(x)}, \quad s,t > 0.$$

Theorem Let *S* be as in (2) with derivative $g' \in RV_{\rho-1}$ for $\rho \in (0, \frac{1}{2})$ and B^H FBM with $H = \rho + 1/2$. Then

$$S_x \stackrel{d}{\to} B^H \quad \text{as } x \to \infty,$$

where convergence holds in the Skorokhod space $D(\mathbb{R})$ with the metric of uniform convergence on compacta.

Stochastic integrals with respect to a GFLP

Throughout: $g: \mathbb{R}_+ \to \mathbb{R}_+$ has derivative g' > 0.

Note that for t > 0

$$g((t-u)_+)-g((-u)_+)=\int_{\mathbb{R}}\mathbf{1}_{(0,t]}(v)g'((v-u)_+)dv\,,\quad u\in\mathbb{R}\,.$$

Use g' as extension of the Riemann-Liouville kernel function and define for appropriate functions h

$$(I_-^g h)(u) := \int_u^\infty h(v)g'(v-u)dv = \int_{\mathbb{R}} h(v)g'((v-u)_+)dv, \quad u \in \mathbb{R}.$$

Proposition Let g' > 0 and $\int_0^1 g'(s)ds + \int_1^\infty (g'(s))^2 ds < \infty$. Define

$$\widetilde{\mathcal{H}} := \{h : \mathbb{R}_+ \to \mathbb{R} : \int_{\mathbb{R}} (I_-^g h)^2(u) du < \infty \}.$$

If $h \in L^1(\mathbb{R}) \cap L^2(\mathbb{R})$, then $h \in \widetilde{\mathcal{H}}$.

The space \mathcal{H}

Define \mathcal{H} as the completion of $L^1(\mathbb{R}) \cap L^2(\mathbb{R})$ wrt the norm

$$||h||_{\mathcal{H}} := \left(E[(L(1))^2] \int_{\mathbb{R}} (I_-^g h)^2(u) du \right)^{1/2}.$$

Theorem Let S be a GFLP with kernel function g and let $h \in \mathcal{H}$. Then in the $L^2(\Omega)$ sense:

$$\int_{\mathbb{R}} h(u)dS(u) = \int_{\mathbb{R}} (I_{-}^{g}h)(u)dL(u).$$

Moreover, the following isometry holds:

$$\|\int_{\mathbb{R}} h(u)dS(u)\|_{L^{2}(\Omega)}^{2} = \|h\|_{\mathcal{H}}^{2}.$$

Note:

 $L^2(\Omega)$ and \mathcal{H} are inner product spaces and for $h_1, h_2 \in \mathcal{H}$,

$$\left\langle \int_{\mathbb{R}} h_1(u) dS(u), \, \int_{\mathbb{R}} h_2(u) dS(u) \right\rangle_{L^2(\Omega)} = \left\langle h_1, h_2 \right\rangle_{\mathcal{H}}.$$

Proposition Let S be a GFLP with kernel function g. Then for $h_1, h_2 \in \mathcal{H}$,

$$\operatorname{Cov}\left[\int_{\mathbb{R}} h_1(u) dS(u), \int_{\mathbb{R}} h_2(v) dS(v)\right] = \left\langle h_1, h_2 \right\rangle_{\mathcal{H}}.$$

Now,

$$\Gamma(u,v) = \frac{\partial^2 \text{Cov}[S(u),S(v)]}{\partial u \partial v} = \int_{\mathbb{R}} g'((u-w)_+)g'((v-w)_+)dw,$$

and, in particular,

$$\langle h_1, h_2 \rangle_{\mathcal{H}} = \int_{\mathbb{R}} \int_{\mathbb{R}} h_1(u)h_2(v) \int_{\mathbb{R}} g'((u-w)_+)g'((v-w)_+)dwdudv.$$

Fractional Ornstein-Uhlenbeck type processes

Definition Let B^H be FBM for 0 < H < 1 and let $\lambda, \sigma > 0$.

(i) For an initial finite random variable Y(0) a **fractional Ornstein-Uhlenbeck process** (**FOU**) is defined as

$$Y^{H}(t) := e^{-\lambda t} \left(Y^{H}(0) + \sigma \int_{0}^{t} e^{\lambda s} dB^{H}(s) \right), \quad t \in \mathbb{R}.$$

(ii) If the initial random variable is given by

$$Y^{H}(0) = \sigma \int_{-\infty}^{0} e^{\lambda s} dB^{H}(s),$$

the FOU is **stationary** and we denote this stationary version by

$$\overline{Y}^H(t) = \sigma \int_{-\infty}^t e^{-\lambda(t-s)} dB^H(s), \quad t \in \mathbb{R}.$$

Definition Let S be a GFLP and let $\lambda, \sigma > 0$.

(i) For finite V(0) an **OU process driven by a GFLP** is defined as

$$V(t):=e^{-\lambda t}\left(V(0)+\sigma\int_0^t e^{\lambda u}dS(u)\right),\quad t\in\mathbb{R}\,.$$

(ii) If the initial random variable is given by

$$V(0) = \sigma \int_{-\infty}^{0} e^{\lambda u} dS(u), \quad t \in \mathbb{R},$$

the OU process driven by a GFLP is **stationary** and we denote this stationary version by

$$\overline{V}(t) = \sigma \int_{-\infty}^{t} e^{-\lambda(t-u)} dS(u), \quad t \in \mathbb{R}.$$

Proposition Let S be a GFLP and $\lambda > 0$. For all $t \in \mathbb{R}$, in $L^2(\Omega)$,

$$\overline{V}(t) := \int_{-\infty}^{t} e^{-\lambda(t-u)} dS(u) = \int_{-\infty}^{t} (I_{-}^{g} e^{-\lambda(t-u)})(u) dL(u).$$

Furthermore, for all $s, t \in \mathbb{R}$ we have $E[\overline{V}(t)] = 0$ and

$$\operatorname{Cov}[\overline{V}(s), \overline{V}(t)] = \int_{-\infty}^{t} \int_{-\infty}^{s} e^{-\lambda(t-u)} e^{-\lambda(s-v)} \Gamma(u, v) du dv,$$

where, we recall,

$$\Gamma(u,v) = \frac{\partial^2 \text{Cov}[S(u),S(v)]}{\partial u \partial v} = \int_{\mathbb{R}} g'((u-w)_+)g'((v-w)_+)dw.$$

The chf of $\overline{V}(t_1), \ldots, \overline{V}(t_m)$ for $t_1 < \cdots < t_m$ is

$$E\Big[\exp\Big\{\sum_{j=1}^m i\theta_j \overline{V}(t_j)\Big\}\Big] = \exp\Big\{\int_{\mathbb{R}} \psi\Big(\sum_{j=1}^m \theta_j \int_{-\infty}^{t_j} e^{-\lambda(t_j-v)} g'((v-s)_+) dv\Big) ds\Big\},\,$$

where $\theta_i \in \mathbb{R}, j = 1, ..., m$, and ψ is given in (1).

Limit theory for OU processes driven by time scaled GFLPs

For x > 0 let $\sigma^2(x) := \text{Var}[S(x)]$ and recall the **time scaled GFLP**

$$S_x(t) := \frac{S(xt)}{\sigma(x)}, \quad t \in \mathbb{R},$$

and note that for x > 0

$$S(xt) = \int \mathbf{1}_{(0,tx]}(v)dS(v) = \int_{\mathbb{R}} (I_{-}^{g}\mathbf{1}_{(0,tx]})(u)dL(u), \quad t \geq 0.$$

Theorem Let S be a GFLP with kernel function g and let $h \in \mathcal{H}$.

(i) Then for x > 0, in the $L^2(\Omega)$ sense,

$$\int_{\mathbb{R}} h(u) dS_x(u) = \frac{x}{\sigma(x)} \int_{\mathbb{R}} \int_{\mathbb{R}} h(v) g'((xv-u)_+) dv dL(u) \,.$$

(ii) Assume that $h_t \in \mathcal{H}$ for $t \in \mathbb{R}$. Then

$$\operatorname{Cov}\left[\int h_s(u)dS_x(u), \int h_t(u)dS_x(u)\right] = \int h_t(u)h_s(v)\Gamma_x(u,v)dudv,$$

where

$$\Gamma_{x}(u,v) = \frac{x^{2}}{\sigma^{2}(x)} \int g'(x(u-w)_{+})g'(x(v-w)_{+})dw.$$

Theorem If $g' \in RV_{\rho-1}$ for $\rho \in (0, \frac{1}{2})$ and $H = \rho + \frac{1}{2}$, then for $s, t \in \mathbb{R}$,

$$\lim_{x \to \infty} \Gamma_{x}(s,t) = \lim_{x \to \infty} \frac{x^{2} \int_{\mathbb{R}} g'(x(s-w)_{+})g'(x(t-w)_{+})dw}{\sigma^{2}(x)}$$

$$= \frac{\rho^{2} \int_{\mathbb{R}} (s-w)_{+}^{\rho-1} (t-w)_{+}^{\rho-1} dw}{\int_{\mathbb{R}} \{(1-u)_{+}^{\rho} - (-u)_{+}^{\rho}\}^{2} du}$$

$$= \frac{\partial^{2}}{\partial t \partial s} \operatorname{Cov}(B^{H}(t), B^{H}(s)) = H(2H-1)|t-s|^{2H-2}$$

$$\lim_{x \to \infty} \widetilde{\Gamma}_{x}(s,t) = \frac{\int_{\mathbb{R}} \{(s-u)_{+}^{\rho} - (-u)_{+}^{\rho}\} \{(t-u)_{+}^{\rho} - (-u)_{+}^{\rho}\}^{2} du}{\int_{\mathbb{R}} \{(1-u)_{+}^{\rho} - (-u)_{+}^{\rho}\}^{2} du}$$

$$= \operatorname{Cov}(B^{H}(s), B^{H}(t)) = \frac{1}{2} (|t|^{2H} + |s|^{2H} - |t-s|^{2H}).$$

Note that $E[S_x(t)] = 0$ and $Var[S_x(t)] = 1$ for all $t \in \mathbb{R}$. **Definition** For λ , $\sigma > 0$ we define the **OU process driven by the time-scaled GFLP**

$$V_x(t) := e^{-\lambda t} \left(V_x(0) + \sigma \int_0^t e^{\lambda s} dS_x(s) \right), \quad t \ge 0.$$

(ii) If the initial random variable is given by

$$V_{x}(0) = \sigma \int_{-\infty}^{0} e^{\lambda s} dS_{x}(s),$$

then V_x is stationary and we denote this stationary process by

$$\overline{V}_{X}(t) := \sigma \int_{-\infty}^{t} e^{-\lambda(t-s)} dS_{X}(s), \quad t \in \mathbb{R}.$$

Proposition For x > 0 let S_x be a time-scaled GFLP.

(i) For $t \in \mathbb{R}$, in the $L^2(\Omega)$ -sense,

$$\overline{V}_x(t) = \int_{-\infty}^t e^{-\lambda(t-u)}(u) dS_x(u) = \frac{x}{\sigma(x)} \int_{\mathbb{R}} \int_{-\infty}^t e^{-\lambda(t-v)} g'((xv-u)_+) dv dL(u).$$

(ii) For $s, t \in \mathbb{R}$, we have $E[\overline{V}_x(t)] = 0$ and

$$\operatorname{Cov}[\overline{V}_{X}(s), \overline{V}_{X}(t)] = \int_{-\infty}^{s} \int_{-\infty}^{t} e^{-\lambda(t-u)}(u)e^{-\lambda(s-v)}\Gamma_{X}(u,v)dudv,$$

where

$$\Gamma_{x}(u,v) = \frac{x^{2}}{\sigma^{2}(x)} \int_{\mathbb{R}} g'(x(u-w)_{+})g'(x(v-w)_{+})dw.$$

Limit theory

$$\overline{V}_{x}^{\rho}(t) = \sigma \int_{-\infty}^{t} e^{-\lambda(t-s)} dS_{x}(s), \quad t \in \mathbb{R},$$

is a stationary OU process driven by the time-scaled GFLP. Then

$$\overline{V}_{x}(\cdot) \stackrel{d}{\to} \overline{Y}^{H}(\cdot) = \sigma \int_{-\infty}^{\cdot} e^{-\lambda(t-s)} dB^{H}(s) \text{ as } x \to \infty,$$

where convergence holds in $D(\mathbb{R})$ with the metric of uniform convergence on compacta. Recall that $H = \rho + \frac{1}{2}$.

We show joint weak convergence of price and volatility process to a continuous time long memory stochastic volatility model.

Theorem [Jacod and Shiryaev]

For x > 0 we consider, with $H = \rho + \frac{1}{2}$,

$$z_x(t) := \mu t + \beta \int_0^t v_x(s)ds + \int_0^t \sqrt{v_x(s)}dB_s,$$

$$v_x(t) := f(\overline{V}_x^{\rho}(t)),$$

where $f: \mathbb{R} \to \mathbb{R}_+$ is a continuous function. Then for $x \to \infty$ the bivariate process $(z_x(\cdot), v_x(\cdot))$ converges in $D(\mathbb{R}^2_+)$, with the mtric of uniform convergence on compacta, to

$$z(t) := \mu t + \beta \int_0^t v(s)ds + \int_0^t \sqrt{v(s)}dB_s,$$

$$v(t) := f(\overline{Y}^H(t)).$$

