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Motivation from stochastic volatility models

As limit models, for standard Brownian motion B and fractional
Brownian motion B (H € (0, 1/2)), we consider types of models

do(t) = (u+Bv©)di + \W(D)dB(@),
v(it) = f@)forf:R — R, and
dy(t)y = -dy(tdt+dBi(r), 1>0,

and

dz(t) = (u+pBv@)dt +v(t)dB(r)
d(log v(1)) —Alog v(t)dt + odB"(1).
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Generalized fractional Lévy processes

Throughout: L is a two-sided centered, finite variance Lévy process,
no Gaussian component and Lévy measure v.

W.lo.g.: E[(L(£))?*] = tE[(L(1))*] = ¢ foZV(dx) =tforallt > 0.
Recall, E[exp{ifL()}] = exp{ry(6)} for t > 0, where

(o) = f @ — 1 —i0)v(dx), O€eR. (1)
R

Definition Let g : Ry — R, with g(0) = 0 and such that
J[ZR{g((t —8)4) — g((=5)4)}*ds < oo for all t € R. Then

sty = fR (6t = 0,) - gL, R, ()

is called generalized fractional Lévy process (GFLP). O
1
Example Define g(f) = -2, then S is a fractional Lévy process. [
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For x > 0 let 0%(x) := Var[S(x)] and define the time scaled GFLP

.0 = LR
o(x)
Define
o4(x)

Theorem Let S be as in (2) with derivative g’ € RV,,_ for p € (0, %)
and BY FBM with H = p + 1/2. Then

d
Sx—>BH as x — oo,

where convergence holds in the Skorokhod space D(R) with the
metric of uniform convergence on compacta. O
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Stochastic integrals with respect to a GFLP
Throughout: g : R, — R, has derivative g’ > 0.
Note that for r > 0
8((t —u)y) — g((-u)4) = fR LonWg' (v —u))dv, ueR.

Use g’ as extension of the Riemann-Liouville kernel function and
define for appropriate functions £

(Bh)(u) = f“ h(v)g' (v — u)dv = fh(v)g'((v —u))dv, ueR.
u R
Proposition Let g’ > 0 and fol g (s)ds + floo(g’(s))zds < 00, Define
Ho={h:R, 5> R: f(lfh)z(u)du < o).
R

If h e L'(R) N L2(R), then h € H. O
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The space H
Define H as the completion of L' (R) N L*(R) wrt the norm
Uil = (EULHP?) [ @hP o)™

Theorem Let S be a GFLP with kernel function g and let & € H.
Then in the L*(Q) sense:

f h(u)dS(u) = f (I h)(u)dL(u) .
R R

Moreover, the following isometry holds:

|| fR HdS I g, = I
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Note:
L*(Q) and H are inner product spaces and for hy, hy € H,

h1(u)dS ,fh dS > ={hi,h .
< | medsa, [ mandsa gy = Vi),

Proposition Let S be a GFLP with kernel function g. Then for
hi,hy € H,

COV[ j;; I (w)dS(u), fR hz(v)dS(v)] = (hl,h2> ”

Now,

8*Cov[S(u), SM] _

vy = 0050 fR ¢ (= )8 (v = W) )dw,

and, in particular,

(oo}, = [ [ mna) [ g =wg @ = dvdudv.

El
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Fractional Ornstein-Uhlenbeck type processes

Definition Let B be FBM for 0 < H < 1 and let 4,0 > 0.
(i) For an initial finite random variable Y(0) a fractional
Ornstein-Uhlenbeck process (FOU) is defined as

Y1) = eV (YH 0) + o f t e“aB? (s)), teR.
0

(ii) If the initial random variable is given by

0
YH0) =0 f eBdBf(s),

(o)

the FOU is stationary and we denote this stationary version by

!
Y=o f e =9gBH () teR.
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Definition Let S be a GFLP and let 2,0~ > 0.
(1) For finite V(0) an OU process driven by a GFLP is defined as

V() = e (V(O) +o f t e/l“dS(u)), teR.
0

(ii) If the initial random variable is given by
0
V) =0o f eMdS(u), teR,

the OU process driven by a GFLP is stationary and we denote this
stationary version by

!
Vi)=o f e gSw), reR.

(%)
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Proposition Let S be a GFLP and A > 0. For all 7 € R, in L*(Q),

V(@) = f e 70dS () = f (e wdL(w).

(9]

Furthermore, for all 5,7 € R we have E[V()] = 0 and

! S
Cov[V(s), V(D] :f f 0 o=y vydudy

where, we recall,

9*Cov[S(u), S(v)]

Tw,v) = Oudv

= fR g ((u=w))g (v —w))dw.

The chf ofV(tl), . ,V(tm) foryy <o <ty is

E[exp{iiejV(tJ)} —exp f Z f e Mo’ ((v — s)+)dv)ds},

J=1

where 6; € R, j=1,...,m, and ¢ is given in (1). O
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Limit theory for OU processes driven by time scaled GFLPs
For x > 0 let o%(x) := Var[S(x)] and recall the time scaled GFLP

and note that for x > 0

S(xt) = f 10,:q(V)dS(v) = f (810 s (w)dL(u), t>0.
R
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Theorem Let S be a GFLP with kernel function g and let 4 € H.
(i) Then for x > 0, in the L>(Q) sense,

f h()dS, (1) = —— f f h()g' (v — )4 )dvdL(u) .
R o(x) Jr Jr
(ii) Assume that i; € H for ¢ € R. Then

COV[ f hy(u)dS,(w), f h,(u)dsx(u)] = f By (u)hy ()T (u, v)dudy

where

2
T(u, v) = Uﬁ—(x) f & (e — w))g (x(v — W) )dw .
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Theorem If g" € RV,_; for p € (0, %) and H =p+ 1 thenfors,z € R,

. X2 [ g (s = w))g (xe(t — w),)dw
leng) FX(S’ t) - xll_)l'l;lo O'Z(X)
p* (s = wr (e =y dw
(= w0~ CulPdu

2
a—Cov(BH(t),BH(s)) = HQ2H - D)t — 5?2

otds
Jalls = wf, = ()l = wf} = (~w) )u
S A1 = )} = (—u)Pdu

= Cov(B"(9,B(0) = 3P + 15" It = 5,

lim Ty(s, ) =
X—00
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Note that E[S,()] = 0 and Var[S(¢)] = 1 for all € R.
Definition For 4, o > 0 we define the OU process driven by the
time-scaled GFLP

t
Vi(t) = e—ﬂf(vx(O) +o f e’lstx(s)), 1> 0.
0
(ii) If the initial random variable is given by

Vi(0) =0 ﬁ el dS(s),

then V, is stationary and we denote this stationary process by

!
Vo) =0 f e 94S (s), teR.

o
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Proposition For x > 0 let Sy be a time-scaled GFLP.
(i) For ¢ € R, in the L*(Q)-sense,

! !
V) = f e~ () dS () = —— f f e~ o (ev—1a) s YdvdL(u).
—o0 R J-00

o (x)

(i) For 5,7 € R, we have E[V(f)] = 0 and

S !
Cov[V.(s), V4(0)] :f f e (1) eI (u, v)dudb,

where

x2

I(u,v) = 200

.ﬁl;g,(x(” - w))g (x(v — w)y)dw.
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Theorem Let S be a GFLP with kernel function g and g’ € RV,,_; for
p € (0, %). For x > 0, recall that

t
Vi=o f e 4. (s), teR,
is a stationary OU process driven by the time-scaled GFLP. Then

V() 4 ?H(') = O'I. e 9dBM (5) as x — oo,

—00

where convergence holds in D(R) with the metric of uniform
convergence on compacta. Recall that H = p + % O
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We show joint weak convergence of price and volatility process to a
continuous time long memory stochastic volatility model.

Theorem [Jacod and Shiryaev]

For x > 0 we consider, with H = p + %,

yt+ﬁft v(s)ds + ft VVx(s)dBs,
0 0
O

Zx(t)

V(2)

where f : R — R, is a continuous function. Then for x — oo the
bivariate process (zx(-), vx(+)) converges in D(Ri), with the mtric of
uniform convergence on compacta, to

t t
,ut+,8f v(s)ds+f \/v(s)dBs,
0 0
£ @)

z(t)

v(t)
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